摘要并行程序规范:以k-means聚类为例

A. Hommelberg, K. Rietveld, H. Wijshoff
{"title":"摘要并行程序规范:以k-means聚类为例","authors":"A. Hommelberg, K. Rietveld, H. Wijshoff","doi":"10.1145/3310273.3322828","DOIUrl":null,"url":null,"abstract":"The Forelem framework was first introduced to optimize database queries using compiler techniques. Since its introduction, Forelem has proven to be more versatile and to be applicable beyond database applications. In this paper we show that Forelem can be used to specify parallel programs at an abstract level whilst still guaranteeing efficient parallel execution. This is achieved by a sequence of transformations that can be directly implemented as an optimizing compiler toolchain. To demonstrate this, a case study is described, k-Means clustering, for which four implementations are mechanically generated that improve standard MPI C/C++ and outperform state-of-the-art Hadoop implementations.","PeriodicalId":431860,"journal":{"name":"Proceedings of the 16th ACM International Conference on Computing Frontiers","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Abstracting parallel program specification: a case study on k-means clustering\",\"authors\":\"A. Hommelberg, K. Rietveld, H. Wijshoff\",\"doi\":\"10.1145/3310273.3322828\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Forelem framework was first introduced to optimize database queries using compiler techniques. Since its introduction, Forelem has proven to be more versatile and to be applicable beyond database applications. In this paper we show that Forelem can be used to specify parallel programs at an abstract level whilst still guaranteeing efficient parallel execution. This is achieved by a sequence of transformations that can be directly implemented as an optimizing compiler toolchain. To demonstrate this, a case study is described, k-Means clustering, for which four implementations are mechanically generated that improve standard MPI C/C++ and outperform state-of-the-art Hadoop implementations.\",\"PeriodicalId\":431860,\"journal\":{\"name\":\"Proceedings of the 16th ACM International Conference on Computing Frontiers\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 16th ACM International Conference on Computing Frontiers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3310273.3322828\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 16th ACM International Conference on Computing Frontiers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3310273.3322828","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

首先引入Forelem框架是为了使用编译器技术优化数据库查询。自引入以来,Forelem已被证明是更通用的,并且适用于数据库应用程序之外的应用程序。在本文中,我们证明了Forelem可以用于在抽象层次上指定并行程序,同时仍然保证有效的并行执行。这是通过一系列转换来实现的,这些转换可以直接实现为优化编译器工具链。为了证明这一点,本文描述了一个案例研究,k-Means聚类,其中机械地生成了四种实现,它们改进了标准的MPI C/ c++,并且优于最先进的Hadoop实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Abstracting parallel program specification: a case study on k-means clustering
The Forelem framework was first introduced to optimize database queries using compiler techniques. Since its introduction, Forelem has proven to be more versatile and to be applicable beyond database applications. In this paper we show that Forelem can be used to specify parallel programs at an abstract level whilst still guaranteeing efficient parallel execution. This is achieved by a sequence of transformations that can be directly implemented as an optimizing compiler toolchain. To demonstrate this, a case study is described, k-Means clustering, for which four implementations are mechanically generated that improve standard MPI C/C++ and outperform state-of-the-art Hadoop implementations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信