基于神经网络的视频编码色度内预测研究

Chengyi Zou, Shuai Wan, M. Mrak, M. G. Blanch, Luis Herranz, Tiannan Ji
{"title":"基于神经网络的视频编码色度内预测研究","authors":"Chengyi Zou, Shuai Wan, M. Mrak, M. G. Blanch, Luis Herranz, Tiannan Ji","doi":"10.1109/ICIP46576.2022.9897708","DOIUrl":null,"url":null,"abstract":"In video compression the luma channel can be useful for predicting chroma channels (Cb, Cr), as has been demonstrated with the Cross-Component Linear Model (CCLM) used in Versatile Video Coding (VVC) standard. More recently, it has been shown that neural networks can even better capture the relationship among different channels. In this paper, a new attention-based neural network is proposed for cross-component intra prediction. With the goal to simplify neural network design, the new framework consists of four branches: boundary branch and luma branch for extracting features from reference samples, attention branch for fusing the first two branches, and prediction branch for computing the predicted chroma samples. The proposed scheme is integrated into VVC test model together with one additional binary block-level syntax flag which indicates whether a given block makes use of the proposed method. Experimental results demonstrate 0.31%/2.36%/2.00% BD-rate reductions on Y/Cb/Cr components, respectively, on top of the VVC Test Model (VTM) 7.0 which uses CCLM.","PeriodicalId":387035,"journal":{"name":"2022 IEEE International Conference on Image Processing (ICIP)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Towards Lightweight Neural Network-based Chroma Intra Prediction for Video Coding\",\"authors\":\"Chengyi Zou, Shuai Wan, M. Mrak, M. G. Blanch, Luis Herranz, Tiannan Ji\",\"doi\":\"10.1109/ICIP46576.2022.9897708\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In video compression the luma channel can be useful for predicting chroma channels (Cb, Cr), as has been demonstrated with the Cross-Component Linear Model (CCLM) used in Versatile Video Coding (VVC) standard. More recently, it has been shown that neural networks can even better capture the relationship among different channels. In this paper, a new attention-based neural network is proposed for cross-component intra prediction. With the goal to simplify neural network design, the new framework consists of four branches: boundary branch and luma branch for extracting features from reference samples, attention branch for fusing the first two branches, and prediction branch for computing the predicted chroma samples. The proposed scheme is integrated into VVC test model together with one additional binary block-level syntax flag which indicates whether a given block makes use of the proposed method. Experimental results demonstrate 0.31%/2.36%/2.00% BD-rate reductions on Y/Cb/Cr components, respectively, on top of the VVC Test Model (VTM) 7.0 which uses CCLM.\",\"PeriodicalId\":387035,\"journal\":{\"name\":\"2022 IEEE International Conference on Image Processing (ICIP)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Conference on Image Processing (ICIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIP46576.2022.9897708\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP46576.2022.9897708","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在视频压缩中,亮度通道可以用于预测色度通道(Cb, Cr),正如在通用视频编码(VVC)标准中使用的交叉分量线性模型(CCLM)所证明的那样。最近,研究表明,神经网络甚至可以更好地捕捉不同通道之间的关系。本文提出了一种新的基于注意力的神经网络用于跨分量内预测。以简化神经网络设计为目标,该框架由四个分支组成:用于提取参考样本特征的边界分支和亮度分支,用于融合前两个分支的注意分支,以及用于计算预测色度样本的预测分支。该方案与一个附加的二进制块级语法标志(用于指示给定块是否使用该方法)一起集成到VVC测试模型中。实验结果表明,在使用CCLM的VVC测试模型(VTM) 7.0之上,Y/Cb/Cr组分的bb率分别降低了0.31%/2.36%/2.00%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Towards Lightweight Neural Network-based Chroma Intra Prediction for Video Coding
In video compression the luma channel can be useful for predicting chroma channels (Cb, Cr), as has been demonstrated with the Cross-Component Linear Model (CCLM) used in Versatile Video Coding (VVC) standard. More recently, it has been shown that neural networks can even better capture the relationship among different channels. In this paper, a new attention-based neural network is proposed for cross-component intra prediction. With the goal to simplify neural network design, the new framework consists of four branches: boundary branch and luma branch for extracting features from reference samples, attention branch for fusing the first two branches, and prediction branch for computing the predicted chroma samples. The proposed scheme is integrated into VVC test model together with one additional binary block-level syntax flag which indicates whether a given block makes use of the proposed method. Experimental results demonstrate 0.31%/2.36%/2.00% BD-rate reductions on Y/Cb/Cr components, respectively, on top of the VVC Test Model (VTM) 7.0 which uses CCLM.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信