基于exciplex的高效oled(会议报告)

Ken‐Tsung Wong
{"title":"基于exciplex的高效oled(会议报告)","authors":"Ken‐Tsung Wong","doi":"10.1117/12.2323782","DOIUrl":null,"url":null,"abstract":"Organic materials that display thermally activated delayed fluorescence (TADF) are a striking class of functional materials that have witnessed a booming progress in recent years. The small ΔEST in TADF-based systems prompts highly efficient RISC from T1 to S1 states, and consequently both singlet and triplet excitons can be harvested for light emission. For the last five years, a tremendous amount of TADF molecules have been reported based on the manipulation of the intramolecular charge transfer as well as the HOMO-LUMO overlap. Beyond this strategy, there is an emerging approach that simply involves intermolecular charge transfer between physically blended electron donor and acceptor molecules for high efficiency TADF-based OLEDs (via exciplex formation). This is because the exciplex-based systems can realize relatively small ΔEST (0–0.05 eV) much more easily since the electron and hole are positioned on two different molecules, thereby giving small exchange energy. Consequently, exciplex-based OLEDs have the possibility to maximize the TADF contribution and achieve theoretical 100% internal quantum efficiency and solve the challenging issue of achieving small ΔEST in organic systems. However, research on exciplex-forming materials is still at a growing stage, and consequently, new molecules with remarkable electro and or photo-physical property are still being explored. Thus, by focusing on the development of exciplex systems, we shall have the prospective of achieving the demands for high-efficiency and high stability OLED devices. In this conference, we will report our updated results of new efficient exciplex systems, and exciplex-hosted fluorescent and phosphorescent OLEDs with high efficiency and high stability.","PeriodicalId":158502,"journal":{"name":"Organic Light Emitting Materials and Devices XXII","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High efficiency OLEDs based on exciplex (Conference Presentation)\",\"authors\":\"Ken‐Tsung Wong\",\"doi\":\"10.1117/12.2323782\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Organic materials that display thermally activated delayed fluorescence (TADF) are a striking class of functional materials that have witnessed a booming progress in recent years. The small ΔEST in TADF-based systems prompts highly efficient RISC from T1 to S1 states, and consequently both singlet and triplet excitons can be harvested for light emission. For the last five years, a tremendous amount of TADF molecules have been reported based on the manipulation of the intramolecular charge transfer as well as the HOMO-LUMO overlap. Beyond this strategy, there is an emerging approach that simply involves intermolecular charge transfer between physically blended electron donor and acceptor molecules for high efficiency TADF-based OLEDs (via exciplex formation). This is because the exciplex-based systems can realize relatively small ΔEST (0–0.05 eV) much more easily since the electron and hole are positioned on two different molecules, thereby giving small exchange energy. Consequently, exciplex-based OLEDs have the possibility to maximize the TADF contribution and achieve theoretical 100% internal quantum efficiency and solve the challenging issue of achieving small ΔEST in organic systems. However, research on exciplex-forming materials is still at a growing stage, and consequently, new molecules with remarkable electro and or photo-physical property are still being explored. Thus, by focusing on the development of exciplex systems, we shall have the prospective of achieving the demands for high-efficiency and high stability OLED devices. In this conference, we will report our updated results of new efficient exciplex systems, and exciplex-hosted fluorescent and phosphorescent OLEDs with high efficiency and high stability.\",\"PeriodicalId\":158502,\"journal\":{\"name\":\"Organic Light Emitting Materials and Devices XXII\",\"volume\":\"46 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Organic Light Emitting Materials and Devices XXII\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2323782\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organic Light Emitting Materials and Devices XXII","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2323782","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

显示热激活延迟荧光(TADF)的有机材料是近年来发展迅速的一类引人注目的功能材料。基于tadf的系统中的小ΔEST促使从T1到S1状态的高效RISC,因此可以收集单线态和三重态激子用于发光。在过去的五年中,大量的基于分子内电荷转移和HOMO-LUMO重叠的TADF分子被报道。除了这种策略之外,还有一种新兴的方法,即在物理混合的电子供体和受体分子之间进行分子间电荷转移,以实现高效的基于tadf的oled(通过外络合物形成)。这是因为电子和空穴位于两个不同的分子上,因此交换能很小,因此基于异构体的系统可以更容易地实现相对较小的ΔEST (0-0.05 eV)。因此,基于激子的oled有可能最大化TADF贡献并实现理论上100%的内部量子效率,并解决在有机系统中实现小ΔEST的挑战性问题。然而,对异构体形成材料的研究仍处于发展阶段,因此,具有显着的电或光物理性质的新分子仍在探索中。因此,通过专注于异构系统的发展,我们将有希望实现对高效率和高稳定性OLED器件的需求。在本次会议上,我们将报告我们的最新研究成果,新的高效的激光复合物系统,以及具有高效率和高稳定性的激光复合物承载的荧光和磷光oled。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
High efficiency OLEDs based on exciplex (Conference Presentation)
Organic materials that display thermally activated delayed fluorescence (TADF) are a striking class of functional materials that have witnessed a booming progress in recent years. The small ΔEST in TADF-based systems prompts highly efficient RISC from T1 to S1 states, and consequently both singlet and triplet excitons can be harvested for light emission. For the last five years, a tremendous amount of TADF molecules have been reported based on the manipulation of the intramolecular charge transfer as well as the HOMO-LUMO overlap. Beyond this strategy, there is an emerging approach that simply involves intermolecular charge transfer between physically blended electron donor and acceptor molecules for high efficiency TADF-based OLEDs (via exciplex formation). This is because the exciplex-based systems can realize relatively small ΔEST (0–0.05 eV) much more easily since the electron and hole are positioned on two different molecules, thereby giving small exchange energy. Consequently, exciplex-based OLEDs have the possibility to maximize the TADF contribution and achieve theoretical 100% internal quantum efficiency and solve the challenging issue of achieving small ΔEST in organic systems. However, research on exciplex-forming materials is still at a growing stage, and consequently, new molecules with remarkable electro and or photo-physical property are still being explored. Thus, by focusing on the development of exciplex systems, we shall have the prospective of achieving the demands for high-efficiency and high stability OLED devices. In this conference, we will report our updated results of new efficient exciplex systems, and exciplex-hosted fluorescent and phosphorescent OLEDs with high efficiency and high stability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信