基于分而治之神经网络的时间序列预测

Suixun Guo, Rongbo Huang
{"title":"基于分而治之神经网络的时间序列预测","authors":"Suixun Guo, Rongbo Huang","doi":"10.1109/NCIS.2011.100","DOIUrl":null,"url":null,"abstract":"This paper presents a Divide-and-Conquer System based Neural Networks (DCSNN) for forecasting time series. This DCSNN is composed of several sub-RBF networks which takes each low-dimensional sub-input as its input. The output of DCSNN is the sum of each sub-RBF networks' output. The algorithm of DCRBF is given and its forecasting ability also is discussed in this paper. The experimental results have shown that the DCSNN is outperforms the conventional RBF for forecasting time series.","PeriodicalId":215517,"journal":{"name":"2011 International Conference on Network Computing and Information Security","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Divide-and-Conquer System Based Neural Networks for Forecasting Time Series\",\"authors\":\"Suixun Guo, Rongbo Huang\",\"doi\":\"10.1109/NCIS.2011.100\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a Divide-and-Conquer System based Neural Networks (DCSNN) for forecasting time series. This DCSNN is composed of several sub-RBF networks which takes each low-dimensional sub-input as its input. The output of DCSNN is the sum of each sub-RBF networks' output. The algorithm of DCRBF is given and its forecasting ability also is discussed in this paper. The experimental results have shown that the DCSNN is outperforms the conventional RBF for forecasting time series.\",\"PeriodicalId\":215517,\"journal\":{\"name\":\"2011 International Conference on Network Computing and Information Security\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 International Conference on Network Computing and Information Security\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NCIS.2011.100\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference on Network Computing and Information Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NCIS.2011.100","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种基于分治系统的神经网络(DCSNN)预测时间序列的方法。该DCSNN由多个子rbf网络组成,每个子rbf网络以每个低维子输入作为输入。DCSNN的输出是各子rbf网络的输出之和。本文给出了DCRBF的算法,并对其预测能力进行了讨论。实验结果表明,DCSNN在预测时间序列方面优于传统的RBF。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Divide-and-Conquer System Based Neural Networks for Forecasting Time Series
This paper presents a Divide-and-Conquer System based Neural Networks (DCSNN) for forecasting time series. This DCSNN is composed of several sub-RBF networks which takes each low-dimensional sub-input as its input. The output of DCSNN is the sum of each sub-RBF networks' output. The algorithm of DCRBF is given and its forecasting ability also is discussed in this paper. The experimental results have shown that the DCSNN is outperforms the conventional RBF for forecasting time series.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信