用于信息融合的深度判别分数阶典型相关分析

Lei Gao, Ling Guan
{"title":"用于信息融合的深度判别分数阶典型相关分析","authors":"Lei Gao, Ling Guan","doi":"10.1109/SDS57534.2023.00015","DOIUrl":null,"url":null,"abstract":"The advance of sensory and computing technology has attracted wide attention in the study of intelligent information fusion for multimedia computing and analysis. As a result, information fusion has been taking center stage in the intelligent multimedia and machine learning communities. In this paper, a deep discriminant fractional-order canonical correlation analysis (DDFCCA) method is proposed with application to information fusion. Benefiting from the integration of deep cascade neural networks (NNs) with discriminant power of the fractionalorder correlation matrix across multiple data/information sources, the proposed DDFCCA method demonstrates the ability to generate high quality data/information representation. To verify the effectiveness and generic nature of the proposed method, we conduct experiments on three database (MNIST database, RML audio emotional database, and Caltech101 database). Experimental results validate the superiority of the DDFCCA method over stateof-the-art for information fusion.","PeriodicalId":150544,"journal":{"name":"2023 10th IEEE Swiss Conference on Data Science (SDS)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Deep Discriminant Fractional-order Canonical Correlation Analysis For Information Fusion\",\"authors\":\"Lei Gao, Ling Guan\",\"doi\":\"10.1109/SDS57534.2023.00015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The advance of sensory and computing technology has attracted wide attention in the study of intelligent information fusion for multimedia computing and analysis. As a result, information fusion has been taking center stage in the intelligent multimedia and machine learning communities. In this paper, a deep discriminant fractional-order canonical correlation analysis (DDFCCA) method is proposed with application to information fusion. Benefiting from the integration of deep cascade neural networks (NNs) with discriminant power of the fractionalorder correlation matrix across multiple data/information sources, the proposed DDFCCA method demonstrates the ability to generate high quality data/information representation. To verify the effectiveness and generic nature of the proposed method, we conduct experiments on three database (MNIST database, RML audio emotional database, and Caltech101 database). Experimental results validate the superiority of the DDFCCA method over stateof-the-art for information fusion.\",\"PeriodicalId\":150544,\"journal\":{\"name\":\"2023 10th IEEE Swiss Conference on Data Science (SDS)\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 10th IEEE Swiss Conference on Data Science (SDS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SDS57534.2023.00015\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 10th IEEE Swiss Conference on Data Science (SDS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SDS57534.2023.00015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

随着感官和计算技术的发展,多媒体计算与分析的智能信息融合研究受到了广泛关注。因此,信息融合已经成为智能多媒体和机器学习社区的中心舞台。提出了一种深度判别分数阶典型相关分析(DDFCCA)方法,并将其应用于信息融合。得益于深度级联神经网络(nn)在多个数据/信息源上具有分数阶相关矩阵判别能力的集成,所提出的DDFCCA方法证明了生成高质量数据/信息表示的能力。为了验证该方法的有效性和通用性,我们在三个数据库(MNIST数据库、RML音频情感数据库和Caltech101数据库)上进行了实验。实验结果验证了DDFCCA方法在信息融合方面的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Deep Discriminant Fractional-order Canonical Correlation Analysis For Information Fusion
The advance of sensory and computing technology has attracted wide attention in the study of intelligent information fusion for multimedia computing and analysis. As a result, information fusion has been taking center stage in the intelligent multimedia and machine learning communities. In this paper, a deep discriminant fractional-order canonical correlation analysis (DDFCCA) method is proposed with application to information fusion. Benefiting from the integration of deep cascade neural networks (NNs) with discriminant power of the fractionalorder correlation matrix across multiple data/information sources, the proposed DDFCCA method demonstrates the ability to generate high quality data/information representation. To verify the effectiveness and generic nature of the proposed method, we conduct experiments on three database (MNIST database, RML audio emotional database, and Caltech101 database). Experimental results validate the superiority of the DDFCCA method over stateof-the-art for information fusion.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信