基于Beowulf聚类的并行UNDX实数编码遗传算法优化BMI

M. Handa, M. Kawanishi, H. Kanki
{"title":"基于Beowulf聚类的并行UNDX实数编码遗传算法优化BMI","authors":"M. Handa, M. Kawanishi, H. Kanki","doi":"10.1117/12.784340","DOIUrl":null,"url":null,"abstract":"This paper deals with the global optimization algorithm of the Bilinear Matrix Inequalities (BMIs) based on the Unimodal Normal Distribution Crossover (UNDX) GA. First, analyzing the structure of the BMIs, the existence of the typical difficult structures is confirmed. Then, in order to improve the performance of algorithm, based on results of the problem structures analysis and consideration of BMIs characteristic properties, we proposed the algorithm using primary search direction with relaxed Linear Matrix Inequality (LMI) convex estimation. Moreover, in these algorithms, we propose two types of evaluation methods for GA individuals based on LMI calculation considering BMI characteristic properties more. In addition, in order to reduce computational time, we proposed parallelization of RCGA algorithm, Master-Worker paradigm with cluster computing technique.","PeriodicalId":250590,"journal":{"name":"ICMIT: Mechatronics and Information Technology","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"BMI optimization by using parallel UNDX real-coded genetic algorithm with Beowulf cluster\",\"authors\":\"M. Handa, M. Kawanishi, H. Kanki\",\"doi\":\"10.1117/12.784340\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper deals with the global optimization algorithm of the Bilinear Matrix Inequalities (BMIs) based on the Unimodal Normal Distribution Crossover (UNDX) GA. First, analyzing the structure of the BMIs, the existence of the typical difficult structures is confirmed. Then, in order to improve the performance of algorithm, based on results of the problem structures analysis and consideration of BMIs characteristic properties, we proposed the algorithm using primary search direction with relaxed Linear Matrix Inequality (LMI) convex estimation. Moreover, in these algorithms, we propose two types of evaluation methods for GA individuals based on LMI calculation considering BMI characteristic properties more. In addition, in order to reduce computational time, we proposed parallelization of RCGA algorithm, Master-Worker paradigm with cluster computing technique.\",\"PeriodicalId\":250590,\"journal\":{\"name\":\"ICMIT: Mechatronics and Information Technology\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ICMIT: Mechatronics and Information Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.784340\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICMIT: Mechatronics and Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.784340","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究了基于单峰正态分布交叉遗传算法(UNDX)的双线性矩阵不等式全局优化算法。首先,通过对指标体系结构的分析,确定了典型难结构的存在。然后,为了提高算法的性能,在问题结构分析结果的基础上,考虑到bmi的特征性质,提出了基于放松线性矩阵不等式(LMI)凸估计的主搜索方向算法。此外,在这些算法中,我们提出了两种基于LMI计算更多考虑BMI特征属性的GA个体评价方法。此外,为了减少计算时间,我们提出了并行化RCGA算法,主工范式与集群计算技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
BMI optimization by using parallel UNDX real-coded genetic algorithm with Beowulf cluster
This paper deals with the global optimization algorithm of the Bilinear Matrix Inequalities (BMIs) based on the Unimodal Normal Distribution Crossover (UNDX) GA. First, analyzing the structure of the BMIs, the existence of the typical difficult structures is confirmed. Then, in order to improve the performance of algorithm, based on results of the problem structures analysis and consideration of BMIs characteristic properties, we proposed the algorithm using primary search direction with relaxed Linear Matrix Inequality (LMI) convex estimation. Moreover, in these algorithms, we propose two types of evaluation methods for GA individuals based on LMI calculation considering BMI characteristic properties more. In addition, in order to reduce computational time, we proposed parallelization of RCGA algorithm, Master-Worker paradigm with cluster computing technique.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信