云环境中故障检测的数据标注:一种基于测试套件的主动学习方法

Prateek Bagora, Amin Ebrahimzadeh, F. Wuhib, R. Glitho
{"title":"云环境中故障检测的数据标注:一种基于测试套件的主动学习方法","authors":"Prateek Bagora, Amin Ebrahimzadeh, F. Wuhib, R. Glitho","doi":"10.1109/NetSoft57336.2023.10175492","DOIUrl":null,"url":null,"abstract":"Ensuring the quality of service of applications deployed in inherently complex and fault-prone cloud environments is of utmost concern. While machine learning based fault management solutions help attain the desired reliability, they require labeled cloud metrics data for training and evaluation. Furthermore, high dynamicity of cloud environments brings forth emerging data distributions, which necessitate frequent labeling of data for model adaptation. We propose a test suite-based active learning framework for automated labeling of cloud metrics data with the corresponding cloud system state while accounting for emerging fault patterns and data or concept drifts. We have implemented our solution on a cloud testbed and introduced various emerging data distribution scenarios to evaluate the proposed framework’s labeling efficacy over known and emerging data distributions. According to our results, the proposed framework achieves a 41% higher weighted Fl-score and a 34% higher average AUC score than a system without any adaptation for emerging data distributions.","PeriodicalId":223208,"journal":{"name":"2023 IEEE 9th International Conference on Network Softwarization (NetSoft)","volume":"236 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Data Labeling for Fault Detection in Cloud: A Test Suite-Based Active Learning Approach\",\"authors\":\"Prateek Bagora, Amin Ebrahimzadeh, F. Wuhib, R. Glitho\",\"doi\":\"10.1109/NetSoft57336.2023.10175492\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ensuring the quality of service of applications deployed in inherently complex and fault-prone cloud environments is of utmost concern. While machine learning based fault management solutions help attain the desired reliability, they require labeled cloud metrics data for training and evaluation. Furthermore, high dynamicity of cloud environments brings forth emerging data distributions, which necessitate frequent labeling of data for model adaptation. We propose a test suite-based active learning framework for automated labeling of cloud metrics data with the corresponding cloud system state while accounting for emerging fault patterns and data or concept drifts. We have implemented our solution on a cloud testbed and introduced various emerging data distribution scenarios to evaluate the proposed framework’s labeling efficacy over known and emerging data distributions. According to our results, the proposed framework achieves a 41% higher weighted Fl-score and a 34% higher average AUC score than a system without any adaptation for emerging data distributions.\",\"PeriodicalId\":223208,\"journal\":{\"name\":\"2023 IEEE 9th International Conference on Network Softwarization (NetSoft)\",\"volume\":\"236 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE 9th International Conference on Network Softwarization (NetSoft)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NetSoft57336.2023.10175492\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE 9th International Conference on Network Softwarization (NetSoft)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NetSoft57336.2023.10175492","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

确保部署在复杂且容易出错的云环境中的应用程序的服务质量是最重要的问题。虽然基于机器学习的故障管理解决方案有助于实现所需的可靠性,但它们需要标记的云度量数据进行培训和评估。此外,云环境的高动态性带来了新兴的数据分布,这需要频繁地标记数据以适应模型。我们提出了一个基于测试套件的主动学习框架,用于自动标记具有相应云系统状态的云度量数据,同时考虑到新出现的故障模式和数据或概念漂移。我们在云测试平台上实现了我们的解决方案,并引入了各种新兴的数据分布场景,以评估所提议的框架在已知和新兴数据分布上的标记效果。根据我们的结果,与没有对新兴数据分布进行任何适应的系统相比,所提出的框架实现了41%的加权fl分数和34%的平均AUC分数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Data Labeling for Fault Detection in Cloud: A Test Suite-Based Active Learning Approach
Ensuring the quality of service of applications deployed in inherently complex and fault-prone cloud environments is of utmost concern. While machine learning based fault management solutions help attain the desired reliability, they require labeled cloud metrics data for training and evaluation. Furthermore, high dynamicity of cloud environments brings forth emerging data distributions, which necessitate frequent labeling of data for model adaptation. We propose a test suite-based active learning framework for automated labeling of cloud metrics data with the corresponding cloud system state while accounting for emerging fault patterns and data or concept drifts. We have implemented our solution on a cloud testbed and introduced various emerging data distribution scenarios to evaluate the proposed framework’s labeling efficacy over known and emerging data distributions. According to our results, the proposed framework achieves a 41% higher weighted Fl-score and a 34% higher average AUC score than a system without any adaptation for emerging data distributions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信