乌尔姆大学的自动驾驶:一种模块化、鲁棒性和与传感器无关的融合方法

Felix Kunz, Dominik Nuss, J. Wiest, H. Deusch, Stephan Reuter, Franz Gritschneder, A. Scheel, M. Stuebler, Martin Bach, Patrick Hatzelmann, Cornelius Wild, K. Dietmayer
{"title":"乌尔姆大学的自动驾驶:一种模块化、鲁棒性和与传感器无关的融合方法","authors":"Felix Kunz, Dominik Nuss, J. Wiest, H. Deusch, Stephan Reuter, Franz Gritschneder, A. Scheel, M. Stuebler, Martin Bach, Patrick Hatzelmann, Cornelius Wild, K. Dietmayer","doi":"10.1109/IVS.2015.7225761","DOIUrl":null,"url":null,"abstract":"The project “Autonomous Driving” at Ulm University aims at advancing highly-automated driving with close-to-market sensors while ensuring easy exchangeability of the particular components. In this contribution, the experimental vehicle that was realized during the project is presented along with its software modules. To achieve the mentioned goals, a sophisticated fusion approach for robust environment perception is essential. Apart from the necessary motion planning algorithms, this paper thus focuses on the sensor-independent fusion scheme. It allows for an efficient sensor replacement and realizes redundancy by using probabilistic and generic interfaces. Redundancy is ensured by utilizing multiple sensors of different types in crucial modules like grid mapping, localization and tracking. Furthermore, the combination of the module outputs to a consistent environment model is achieved by employing their probabilistic representation. The performance of the vehicle is discussed using the experience from numerous autonomous driving tests on public roads.","PeriodicalId":294701,"journal":{"name":"2015 IEEE Intelligent Vehicles Symposium (IV)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"102","resultStr":"{\"title\":\"Autonomous driving at Ulm University: A modular, robust, and sensor-independent fusion approach\",\"authors\":\"Felix Kunz, Dominik Nuss, J. Wiest, H. Deusch, Stephan Reuter, Franz Gritschneder, A. Scheel, M. Stuebler, Martin Bach, Patrick Hatzelmann, Cornelius Wild, K. Dietmayer\",\"doi\":\"10.1109/IVS.2015.7225761\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The project “Autonomous Driving” at Ulm University aims at advancing highly-automated driving with close-to-market sensors while ensuring easy exchangeability of the particular components. In this contribution, the experimental vehicle that was realized during the project is presented along with its software modules. To achieve the mentioned goals, a sophisticated fusion approach for robust environment perception is essential. Apart from the necessary motion planning algorithms, this paper thus focuses on the sensor-independent fusion scheme. It allows for an efficient sensor replacement and realizes redundancy by using probabilistic and generic interfaces. Redundancy is ensured by utilizing multiple sensors of different types in crucial modules like grid mapping, localization and tracking. Furthermore, the combination of the module outputs to a consistent environment model is achieved by employing their probabilistic representation. The performance of the vehicle is discussed using the experience from numerous autonomous driving tests on public roads.\",\"PeriodicalId\":294701,\"journal\":{\"name\":\"2015 IEEE Intelligent Vehicles Symposium (IV)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"102\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE Intelligent Vehicles Symposium (IV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IVS.2015.7225761\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Intelligent Vehicles Symposium (IV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IVS.2015.7225761","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 102

摘要

乌尔姆大学的“自动驾驶”项目旨在通过贴近市场的传感器推进高度自动化驾驶,同时确保特定部件的易于交换。在这篇文章中,介绍了在项目期间实现的实验车辆及其软件模块。为了实现上述目标,一种复杂的鲁棒环境感知融合方法是必不可少的。因此,除了必要的运动规划算法外,本文还重点研究了与传感器无关的融合方案。它允许有效的传感器更换,并通过使用概率和通用接口实现冗余。通过在网格映射、定位和跟踪等关键模块中使用不同类型的多个传感器来确保冗余。此外,通过使用模块输出的概率表示来实现模块输出到一致环境模型的组合。根据在公共道路上进行的多次自动驾驶测试的经验,对车辆的性能进行了讨论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Autonomous driving at Ulm University: A modular, robust, and sensor-independent fusion approach
The project “Autonomous Driving” at Ulm University aims at advancing highly-automated driving with close-to-market sensors while ensuring easy exchangeability of the particular components. In this contribution, the experimental vehicle that was realized during the project is presented along with its software modules. To achieve the mentioned goals, a sophisticated fusion approach for robust environment perception is essential. Apart from the necessary motion planning algorithms, this paper thus focuses on the sensor-independent fusion scheme. It allows for an efficient sensor replacement and realizes redundancy by using probabilistic and generic interfaces. Redundancy is ensured by utilizing multiple sensors of different types in crucial modules like grid mapping, localization and tracking. Furthermore, the combination of the module outputs to a consistent environment model is achieved by employing their probabilistic representation. The performance of the vehicle is discussed using the experience from numerous autonomous driving tests on public roads.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信