基于特征融合的地面车辆SAR图像分类增强

Pouya Bolourchi, M. Moradi, H. Demirel, S. Uysal
{"title":"基于特征融合的地面车辆SAR图像分类增强","authors":"Pouya Bolourchi, M. Moradi, H. Demirel, S. Uysal","doi":"10.1109/UKSim.2017.11","DOIUrl":null,"url":null,"abstract":"In this paper four feature extraction techniques are utilized to extract features from Synthetic Aperture Radar images namely as Radial Harmonic Fourier Moment, Local Binary Pattern, Haar Wavelet and Radon Transform. Holdout, 2-fold and 10-fold cross validation techniques are used for classification of images by using Support Vector Machine classifier. Haar Wavelet and Radon Transform does not reduce the dimensions of input data, hence Principle Component Analysis is applied to reduce the dimensionality. Fusion is established by concatenation of all the features of Radial Harmonic Fourier Moment, and Local Binary Pattern and selected features of Haar Wavelet Radon Transform. Experimental results verify that fused technique represents an improvement in accuracy.","PeriodicalId":309250,"journal":{"name":"2017 UKSim-AMSS 19th International Conference on Computer Modelling & Simulation (UKSim)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Feature Fusion for Classification Enhancement of Ground Vehicle SAR Images\",\"authors\":\"Pouya Bolourchi, M. Moradi, H. Demirel, S. Uysal\",\"doi\":\"10.1109/UKSim.2017.11\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper four feature extraction techniques are utilized to extract features from Synthetic Aperture Radar images namely as Radial Harmonic Fourier Moment, Local Binary Pattern, Haar Wavelet and Radon Transform. Holdout, 2-fold and 10-fold cross validation techniques are used for classification of images by using Support Vector Machine classifier. Haar Wavelet and Radon Transform does not reduce the dimensions of input data, hence Principle Component Analysis is applied to reduce the dimensionality. Fusion is established by concatenation of all the features of Radial Harmonic Fourier Moment, and Local Binary Pattern and selected features of Haar Wavelet Radon Transform. Experimental results verify that fused technique represents an improvement in accuracy.\",\"PeriodicalId\":309250,\"journal\":{\"name\":\"2017 UKSim-AMSS 19th International Conference on Computer Modelling & Simulation (UKSim)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 UKSim-AMSS 19th International Conference on Computer Modelling & Simulation (UKSim)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/UKSim.2017.11\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 UKSim-AMSS 19th International Conference on Computer Modelling & Simulation (UKSim)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UKSim.2017.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

本文利用径向谐波傅立叶矩、局部二值图、Haar小波和Radon变换四种特征提取技术对合成孔径雷达图像进行特征提取。使用支持向量机分类器对图像进行分类,使用了hold - out、2-fold和10-fold交叉验证技术。Haar小波变换和Radon变换不能对输入数据进行降维,因此采用主成分分析进行降维。将径向谐波傅立叶矩、局部二值模式和Haar小波Radon变换的部分特征进行拼接,建立融合。实验结果表明,融合技术提高了检测精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Feature Fusion for Classification Enhancement of Ground Vehicle SAR Images
In this paper four feature extraction techniques are utilized to extract features from Synthetic Aperture Radar images namely as Radial Harmonic Fourier Moment, Local Binary Pattern, Haar Wavelet and Radon Transform. Holdout, 2-fold and 10-fold cross validation techniques are used for classification of images by using Support Vector Machine classifier. Haar Wavelet and Radon Transform does not reduce the dimensions of input data, hence Principle Component Analysis is applied to reduce the dimensionality. Fusion is established by concatenation of all the features of Radial Harmonic Fourier Moment, and Local Binary Pattern and selected features of Haar Wavelet Radon Transform. Experimental results verify that fused technique represents an improvement in accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信