汽车SAR相位误差估计

M. Farhadi, R. Feger, J. Fink, T. Wagner, M. Gonser, J. Hasch, A. Stelzer
{"title":"汽车SAR相位误差估计","authors":"M. Farhadi, R. Feger, J. Fink, T. Wagner, M. Gonser, J. Hasch, A. Stelzer","doi":"10.1109/ICMIM48759.2020.9298998","DOIUrl":null,"url":null,"abstract":"Phase error estimation and correction plays an essential role in high quality synthetic aperture radar (SAR) image formation. Especially in automotive applications, because of the highly non-linear driving paths, it is required to alleviate uncompensated motion errors. In this work, we use the general version of phase gradient autofocus (PGA) which is compatible with time-domain image formation algorithms. The adapted method overcomes the typical problems of conventional approaches and shows remarkable robustness against a large range of simulated errors. Furthermore, the proposed approach is evaluated on real radar data acquired by mounting a 77-GHz radar system on a bumper of a car. It is demonstrated that the implemented algorithm removes phase errors and improves the quality of automotive SAR image formation.","PeriodicalId":150515,"journal":{"name":"2020 IEEE MTT-S International Conference on Microwaves for Intelligent Mobility (ICMIM)","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Phase Error Estimation for Automotive SAR\",\"authors\":\"M. Farhadi, R. Feger, J. Fink, T. Wagner, M. Gonser, J. Hasch, A. Stelzer\",\"doi\":\"10.1109/ICMIM48759.2020.9298998\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Phase error estimation and correction plays an essential role in high quality synthetic aperture radar (SAR) image formation. Especially in automotive applications, because of the highly non-linear driving paths, it is required to alleviate uncompensated motion errors. In this work, we use the general version of phase gradient autofocus (PGA) which is compatible with time-domain image formation algorithms. The adapted method overcomes the typical problems of conventional approaches and shows remarkable robustness against a large range of simulated errors. Furthermore, the proposed approach is evaluated on real radar data acquired by mounting a 77-GHz radar system on a bumper of a car. It is demonstrated that the implemented algorithm removes phase errors and improves the quality of automotive SAR image formation.\",\"PeriodicalId\":150515,\"journal\":{\"name\":\"2020 IEEE MTT-S International Conference on Microwaves for Intelligent Mobility (ICMIM)\",\"volume\":\"57 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE MTT-S International Conference on Microwaves for Intelligent Mobility (ICMIM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMIM48759.2020.9298998\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE MTT-S International Conference on Microwaves for Intelligent Mobility (ICMIM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMIM48759.2020.9298998","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

相位误差的估计与校正在高质量合成孔径雷达(SAR)成像中起着至关重要的作用。特别是在汽车应用中,由于驱动路径高度非线性,需要减轻非补偿运动误差。在这项工作中,我们使用了通用版本的相位梯度自动聚焦(PGA),它与时域图像形成算法兼容。该方法克服了传统方法的典型问题,对大范围的模拟误差具有显著的鲁棒性。最后,通过在汽车保险杠上安装77 ghz雷达系统获取的真实雷达数据,对该方法进行了验证。实验结果表明,该算法消除了相位误差,提高了汽车SAR图像的生成质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Phase Error Estimation for Automotive SAR
Phase error estimation and correction plays an essential role in high quality synthetic aperture radar (SAR) image formation. Especially in automotive applications, because of the highly non-linear driving paths, it is required to alleviate uncompensated motion errors. In this work, we use the general version of phase gradient autofocus (PGA) which is compatible with time-domain image formation algorithms. The adapted method overcomes the typical problems of conventional approaches and shows remarkable robustness against a large range of simulated errors. Furthermore, the proposed approach is evaluated on real radar data acquired by mounting a 77-GHz radar system on a bumper of a car. It is demonstrated that the implemented algorithm removes phase errors and improves the quality of automotive SAR image formation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信