立体计算的全局匹配框架

Hai Tao, H. Sawhney, Rakesh Kumar
{"title":"立体计算的全局匹配框架","authors":"Hai Tao, H. Sawhney, Rakesh Kumar","doi":"10.1109/ICCV.2001.937562","DOIUrl":null,"url":null,"abstract":"This paper presents a new global matching framework for stereo computation. In this framework, the second view is first predicted from the reference view using the depth information. A global match measure is then defined as the similarity function between the predicted image and the actual image. Stereo computation is converted into a search problem where the goal is to find the depth map that maximizes the global match measure. The major advantage of this framework is that the global visibility constraint is inherently enforced in the computation. This paper explores several key components of this framework including (1) three color segmentation based depth representations, (2) an incremental warping algorithm that dramatically reduces the computational complexity, and (3) scene constraints such as the smoothness constraint and the color similarity constraint. Experimental results using different types of depth representations are presented. The quality of the computed depth maps is demonstrated through image-based rendering from new viewpoints.","PeriodicalId":429441,"journal":{"name":"Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"306","resultStr":"{\"title\":\"A global matching framework for stereo computation\",\"authors\":\"Hai Tao, H. Sawhney, Rakesh Kumar\",\"doi\":\"10.1109/ICCV.2001.937562\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a new global matching framework for stereo computation. In this framework, the second view is first predicted from the reference view using the depth information. A global match measure is then defined as the similarity function between the predicted image and the actual image. Stereo computation is converted into a search problem where the goal is to find the depth map that maximizes the global match measure. The major advantage of this framework is that the global visibility constraint is inherently enforced in the computation. This paper explores several key components of this framework including (1) three color segmentation based depth representations, (2) an incremental warping algorithm that dramatically reduces the computational complexity, and (3) scene constraints such as the smoothness constraint and the color similarity constraint. Experimental results using different types of depth representations are presented. The quality of the computed depth maps is demonstrated through image-based rendering from new viewpoints.\",\"PeriodicalId\":429441,\"journal\":{\"name\":\"Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001\",\"volume\":\"57 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"306\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCV.2001.937562\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2001.937562","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 306

摘要

提出了一种新的立体计算全局匹配框架。在该框架中,首先使用深度信息从参考视图预测第二个视图。然后将全局匹配度量定义为预测图像与实际图像之间的相似性函数。立体计算被转化为搜索问题,其目标是找到最大化全局匹配度量的深度图。这个框架的主要优点是全局可见性约束在计算中被强制执行。本文探讨了该框架的几个关键组成部分,包括:(1)基于三种颜色分割的深度表示,(2)显著降低计算复杂度的增量扭曲算法,以及(3)场景约束,如平滑性约束和颜色相似性约束。给出了使用不同深度表示的实验结果。计算深度图的质量通过从新的视点进行基于图像的渲染来展示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A global matching framework for stereo computation
This paper presents a new global matching framework for stereo computation. In this framework, the second view is first predicted from the reference view using the depth information. A global match measure is then defined as the similarity function between the predicted image and the actual image. Stereo computation is converted into a search problem where the goal is to find the depth map that maximizes the global match measure. The major advantage of this framework is that the global visibility constraint is inherently enforced in the computation. This paper explores several key components of this framework including (1) three color segmentation based depth representations, (2) an incremental warping algorithm that dramatically reduces the computational complexity, and (3) scene constraints such as the smoothness constraint and the color similarity constraint. Experimental results using different types of depth representations are presented. The quality of the computed depth maps is demonstrated through image-based rendering from new viewpoints.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信