求非空正交阵列多面体的维数

IF 0.9 4区 数学 Q3 MATHEMATICS, APPLIED
Dursun A. Bulutoglu
{"title":"求非空正交阵列多面体的维数","authors":"Dursun A. Bulutoglu","doi":"10.1016/j.disopt.2022.100727","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>By using representation theory, we reduce the size of the set of possible values for the dimension of the convex hull of all feasible points of an </span>orthogonal array<span><span> (OA) defining integer linear description (ILD). Our results address the conjecture that if this polytope is non-empty, then it is full-dimensional within the </span>affine space where all the feasible points of the ILD’s linear description (LD) relaxation lie, raised by Appa et al. (2006). In particular, our theoretical results provide a sufficient condition for this polytope to be full-dimensional within the LD relaxation affine space when it is non-empty. This sufficient condition implies all the known non-trivial values of the dimension of the </span></span><span><math><mrow><mo>(</mo><mi>k</mi><mo>,</mo><mi>s</mi><mo>)</mo></mrow></math></span> assignment polytope. However, our results suggest that the conjecture mentioned above may not be true. More generally, we provide previously unknown restrictions on the feasible values of the dimension of the convex hull of all feasible points of our OA defining ILD. We also determine all possible corresponding sets of equality constraints up to equivalence that can potentially be implied by the integrality constraints of this ILD. Moreover, we find additional restrictions on the dimension of the convex hull of all feasible points, and larger sets of corresponding equality constraints for the <span><math><mrow><mi>n</mi><mo>=</mo><mn>2</mn></mrow></math></span> and even <span><math><mi>s</mi></math></span> cases. Each of these cases possesses symmetries that do not necessarily exist in the <span><math><mrow><mn>3</mn><mo>≤</mo><mi>n</mi></mrow></math></span> or odd <span><math><mi>s</mi></math></span> cases. Finally, we discuss how to decrease the number of possible values for the dimension of the convex hull of all feasible points of an arbitrary ILD as well as generate sets of corresponding equality constraints with the zero right hand side. These are the only sets of zero right hand side equality constraints up to equivalence that can potentially be implied by the integrality constraints of the ILD.</p></div>","PeriodicalId":50571,"journal":{"name":"Discrete Optimization","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Finding the dimension of a non-empty orthogonal array polytope\",\"authors\":\"Dursun A. Bulutoglu\",\"doi\":\"10.1016/j.disopt.2022.100727\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span><span>By using representation theory, we reduce the size of the set of possible values for the dimension of the convex hull of all feasible points of an </span>orthogonal array<span><span> (OA) defining integer linear description (ILD). Our results address the conjecture that if this polytope is non-empty, then it is full-dimensional within the </span>affine space where all the feasible points of the ILD’s linear description (LD) relaxation lie, raised by Appa et al. (2006). In particular, our theoretical results provide a sufficient condition for this polytope to be full-dimensional within the LD relaxation affine space when it is non-empty. This sufficient condition implies all the known non-trivial values of the dimension of the </span></span><span><math><mrow><mo>(</mo><mi>k</mi><mo>,</mo><mi>s</mi><mo>)</mo></mrow></math></span> assignment polytope. However, our results suggest that the conjecture mentioned above may not be true. More generally, we provide previously unknown restrictions on the feasible values of the dimension of the convex hull of all feasible points of our OA defining ILD. We also determine all possible corresponding sets of equality constraints up to equivalence that can potentially be implied by the integrality constraints of this ILD. Moreover, we find additional restrictions on the dimension of the convex hull of all feasible points, and larger sets of corresponding equality constraints for the <span><math><mrow><mi>n</mi><mo>=</mo><mn>2</mn></mrow></math></span> and even <span><math><mi>s</mi></math></span> cases. Each of these cases possesses symmetries that do not necessarily exist in the <span><math><mrow><mn>3</mn><mo>≤</mo><mi>n</mi></mrow></math></span> or odd <span><math><mi>s</mi></math></span> cases. Finally, we discuss how to decrease the number of possible values for the dimension of the convex hull of all feasible points of an arbitrary ILD as well as generate sets of corresponding equality constraints with the zero right hand side. These are the only sets of zero right hand side equality constraints up to equivalence that can potentially be implied by the integrality constraints of the ILD.</p></div>\",\"PeriodicalId\":50571,\"journal\":{\"name\":\"Discrete Optimization\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2022-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Optimization\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1572528622000354\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Optimization","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1572528622000354","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

利用表示理论,我们减少了定义整数线性描述(ILD)的正交阵列(OA)的所有可行点的凸壳维数的可能值集的大小。我们的结果解决了Appa等人(2006)提出的假设,即如果这个多面体是非空的,那么它在仿射空间内是全维的,在仿射空间内,LD的线性描述(LD)松弛的所有可行点都在该空间内。特别是,我们的理论结果提供了该多面体在非空的LD弛豫仿射空间内是全维的充分条件。这个充分条件蕴涵了(k,s)赋值多面体维数的所有已知非平凡值。然而,我们的研究结果表明,上述猜想可能并不正确。更一般地说,我们对定义ILD的OA所有可行点的凸包尺寸的可行值提供了以前未知的限制。我们还确定了所有可能对应的等价约束集合,这些等价约束可能隐含在这个ILD的完整性约束中。此外,我们还发现了对所有可行点的凸包的维数的附加限制,以及对n=2甚至s种情况的更大的相应相等约束集。这些情况中的每一个都具有对称性,这些对称性不一定存在于3≤n或奇数s的情况中。最后,我们讨论了如何减少任意ILD的所有可行点的凸壳尺寸的可能值的数量以及生成相应的等式约束集,其右侧为零。这些是唯一的零右边等式约束的集合,直到等价,可能隐含在ILD的完整性约束中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Finding the dimension of a non-empty orthogonal array polytope

By using representation theory, we reduce the size of the set of possible values for the dimension of the convex hull of all feasible points of an orthogonal array (OA) defining integer linear description (ILD). Our results address the conjecture that if this polytope is non-empty, then it is full-dimensional within the affine space where all the feasible points of the ILD’s linear description (LD) relaxation lie, raised by Appa et al. (2006). In particular, our theoretical results provide a sufficient condition for this polytope to be full-dimensional within the LD relaxation affine space when it is non-empty. This sufficient condition implies all the known non-trivial values of the dimension of the (k,s) assignment polytope. However, our results suggest that the conjecture mentioned above may not be true. More generally, we provide previously unknown restrictions on the feasible values of the dimension of the convex hull of all feasible points of our OA defining ILD. We also determine all possible corresponding sets of equality constraints up to equivalence that can potentially be implied by the integrality constraints of this ILD. Moreover, we find additional restrictions on the dimension of the convex hull of all feasible points, and larger sets of corresponding equality constraints for the n=2 and even s cases. Each of these cases possesses symmetries that do not necessarily exist in the 3n or odd s cases. Finally, we discuss how to decrease the number of possible values for the dimension of the convex hull of all feasible points of an arbitrary ILD as well as generate sets of corresponding equality constraints with the zero right hand side. These are the only sets of zero right hand side equality constraints up to equivalence that can potentially be implied by the integrality constraints of the ILD.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Discrete Optimization
Discrete Optimization 管理科学-应用数学
CiteScore
2.10
自引率
9.10%
发文量
30
审稿时长
>12 weeks
期刊介绍: Discrete Optimization publishes research papers on the mathematical, computational and applied aspects of all areas of integer programming and combinatorial optimization. In addition to reports on mathematical results pertinent to discrete optimization, the journal welcomes submissions on algorithmic developments, computational experiments, and novel applications (in particular, large-scale and real-time applications). The journal also publishes clearly labelled surveys, reviews, short notes, and open problems. Manuscripts submitted for possible publication to Discrete Optimization should report on original research, should not have been previously published, and should not be under consideration for publication by any other journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信