{"title":"使用可操纵金字塔的虹膜识别","authors":"N. Khiari, H. Mahersia, K. Hamrouni","doi":"10.1109/IPTA.2008.4743737","DOIUrl":null,"url":null,"abstract":"This work presents a new iris recognition method based on steerable pyramid transform. This method consists of four steps: localization, normalization, features extraction and matching. After locating the iris boundaries by Hough Transform, normalization is operated by unwrapping the circular ring and isolating the noisy regions. Steerable pyramid filters are then used to capture orientation details from the iris texture. The features are extracted on each filtered sub-image to form a fixed length feature vector which will be compared to other vectors in the matching step. This technique has been tested on infrared light iris images. It has been compared, in both identification and verification modes, to known methods.","PeriodicalId":384072,"journal":{"name":"2008 First Workshops on Image Processing Theory, Tools and Applications","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Iris Recognition using Steerable Pyramids\",\"authors\":\"N. Khiari, H. Mahersia, K. Hamrouni\",\"doi\":\"10.1109/IPTA.2008.4743737\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work presents a new iris recognition method based on steerable pyramid transform. This method consists of four steps: localization, normalization, features extraction and matching. After locating the iris boundaries by Hough Transform, normalization is operated by unwrapping the circular ring and isolating the noisy regions. Steerable pyramid filters are then used to capture orientation details from the iris texture. The features are extracted on each filtered sub-image to form a fixed length feature vector which will be compared to other vectors in the matching step. This technique has been tested on infrared light iris images. It has been compared, in both identification and verification modes, to known methods.\",\"PeriodicalId\":384072,\"journal\":{\"name\":\"2008 First Workshops on Image Processing Theory, Tools and Applications\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 First Workshops on Image Processing Theory, Tools and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPTA.2008.4743737\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 First Workshops on Image Processing Theory, Tools and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPTA.2008.4743737","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
This work presents a new iris recognition method based on steerable pyramid transform. This method consists of four steps: localization, normalization, features extraction and matching. After locating the iris boundaries by Hough Transform, normalization is operated by unwrapping the circular ring and isolating the noisy regions. Steerable pyramid filters are then used to capture orientation details from the iris texture. The features are extracted on each filtered sub-image to form a fixed length feature vector which will be compared to other vectors in the matching step. This technique has been tested on infrared light iris images. It has been compared, in both identification and verification modes, to known methods.