ISAR成像三维运动模型及检测方法

T. Thayaparan, W. Brinkman
{"title":"ISAR成像三维运动模型及检测方法","authors":"T. Thayaparan, W. Brinkman","doi":"10.1109/IRS.2006.4338117","DOIUrl":null,"url":null,"abstract":"This paper develops an algorithm to detect the presence of 3-dimensional target motion from ISAR data. With the detection algorithm, we have the ability to distinguish the time intervals when the target undergoes smooth 2-dimensional motion from those containing more chaotic 3-dimensional motion. As a result, we can reliably detect those time intervals where 2-dimensional target motions are predominant and can use the existing 2-dimensional motion compensation algorithms such as the adaptive joint time-frequency to form well-focused inverse synthetic aperture radar images.","PeriodicalId":124475,"journal":{"name":"2006 International Radar Symposium","volume":"119 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"3D motion model and detection method for ISAR imaging\",\"authors\":\"T. Thayaparan, W. Brinkman\",\"doi\":\"10.1109/IRS.2006.4338117\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper develops an algorithm to detect the presence of 3-dimensional target motion from ISAR data. With the detection algorithm, we have the ability to distinguish the time intervals when the target undergoes smooth 2-dimensional motion from those containing more chaotic 3-dimensional motion. As a result, we can reliably detect those time intervals where 2-dimensional target motions are predominant and can use the existing 2-dimensional motion compensation algorithms such as the adaptive joint time-frequency to form well-focused inverse synthetic aperture radar images.\",\"PeriodicalId\":124475,\"journal\":{\"name\":\"2006 International Radar Symposium\",\"volume\":\"119 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 International Radar Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IRS.2006.4338117\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 International Radar Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRS.2006.4338117","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一种从ISAR数据中检测三维目标运动的算法。通过检测算法,我们能够区分出目标处于平滑二维运动的时间间隔和包含更多混沌三维运动的时间间隔。因此,我们可以可靠地检测出二维目标运动占主导地位的时间间隔,并可以使用现有的二维运动补偿算法(如自适应联合时频)形成聚焦良好的逆合成孔径雷达图像。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
3D motion model and detection method for ISAR imaging
This paper develops an algorithm to detect the presence of 3-dimensional target motion from ISAR data. With the detection algorithm, we have the ability to distinguish the time intervals when the target undergoes smooth 2-dimensional motion from those containing more chaotic 3-dimensional motion. As a result, we can reliably detect those time intervals where 2-dimensional target motions are predominant and can use the existing 2-dimensional motion compensation algorithms such as the adaptive joint time-frequency to form well-focused inverse synthetic aperture radar images.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信