奥赛罗玩家进化和强化学习的混合

Kyung-Joong Kim, He-Seong Choi, Sung-Bae Cho
{"title":"奥赛罗玩家进化和强化学习的混合","authors":"Kyung-Joong Kim, He-Seong Choi, Sung-Bae Cho","doi":"10.1109/CIG.2007.368099","DOIUrl":null,"url":null,"abstract":"Although the reinforcement learning and evolutionary algorithm show good results in board evaluation optimization, the hybrid of both approaches is rarely addressed in the literature. In this paper, the evolutionary algorithm is boosted using resources from the reinforcement learning. 1) The initialization of initial population using solution optimized by temporal difference learning 2) Exploitation of domain knowledge extracted from reinforcement learning. Experiments on Othello game strategies show that the proposed methods can effectively search the solution space and improve the performance","PeriodicalId":365269,"journal":{"name":"2007 IEEE Symposium on Computational Intelligence and Games","volume":"119 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":"{\"title\":\"Hybrid of Evolution and Reinforcement Learning for Othello Players\",\"authors\":\"Kyung-Joong Kim, He-Seong Choi, Sung-Bae Cho\",\"doi\":\"10.1109/CIG.2007.368099\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Although the reinforcement learning and evolutionary algorithm show good results in board evaluation optimization, the hybrid of both approaches is rarely addressed in the literature. In this paper, the evolutionary algorithm is boosted using resources from the reinforcement learning. 1) The initialization of initial population using solution optimized by temporal difference learning 2) Exploitation of domain knowledge extracted from reinforcement learning. Experiments on Othello game strategies show that the proposed methods can effectively search the solution space and improve the performance\",\"PeriodicalId\":365269,\"journal\":{\"name\":\"2007 IEEE Symposium on Computational Intelligence and Games\",\"volume\":\"119 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"23\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE Symposium on Computational Intelligence and Games\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIG.2007.368099\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE Symposium on Computational Intelligence and Games","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIG.2007.368099","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

摘要

虽然强化学习和进化算法在棋盘评估优化中表现出良好的效果,但两种方法的混合在文献中很少得到解决。本文利用强化学习中的资源对进化算法进行了改进。1)利用时间差分学习优化的解初始化初始种群2)利用强化学习中提取的领域知识。对奥赛罗博弈策略的实验表明,该方法能有效地搜索解空间,提高算法性能
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hybrid of Evolution and Reinforcement Learning for Othello Players
Although the reinforcement learning and evolutionary algorithm show good results in board evaluation optimization, the hybrid of both approaches is rarely addressed in the literature. In this paper, the evolutionary algorithm is boosted using resources from the reinforcement learning. 1) The initialization of initial population using solution optimized by temporal difference learning 2) Exploitation of domain knowledge extracted from reinforcement learning. Experiments on Othello game strategies show that the proposed methods can effectively search the solution space and improve the performance
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信