线性GMM的双校正鲁棒方差估计

Jungbin Hwang, Byunghoon Kang, Seojeong Lee
{"title":"线性GMM的双校正鲁棒方差估计","authors":"Jungbin Hwang, Byunghoon Kang, Seojeong Lee","doi":"10.2139/ssrn.3443554","DOIUrl":null,"url":null,"abstract":"We propose a new finite sample corrected variance estimator for the linear generalized method of moments (GMM) including the one-step, two-step, and iterated estimators. Our formula additionally corrects for the over-identification bias in variance estimation on top of the commonly used finite sample correction of Windmeijer (2005) which corrects for the bias from estimating the efficient weight matrix, so is doubly corrected. Formal stochastic expansions are derived to show the proposed double correction estimates the variance of some higher-order terms in the expansion. In addition, the proposed double correction provides robustness to misspecification of the moment condition. In contrast, the conventional variance estimator and the Windmeijer correction are inconsistent under misspecification. That is, the proposed double correction formula provides a convenient way to obtain improved inference under correct specification and robustness against misspecification at the same time.","PeriodicalId":273058,"journal":{"name":"ERN: Model Construction & Estimation (Topic)","volume":"72 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"A Doubly Corrected Robust Variance Estimator for Linear GMM\",\"authors\":\"Jungbin Hwang, Byunghoon Kang, Seojeong Lee\",\"doi\":\"10.2139/ssrn.3443554\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a new finite sample corrected variance estimator for the linear generalized method of moments (GMM) including the one-step, two-step, and iterated estimators. Our formula additionally corrects for the over-identification bias in variance estimation on top of the commonly used finite sample correction of Windmeijer (2005) which corrects for the bias from estimating the efficient weight matrix, so is doubly corrected. Formal stochastic expansions are derived to show the proposed double correction estimates the variance of some higher-order terms in the expansion. In addition, the proposed double correction provides robustness to misspecification of the moment condition. In contrast, the conventional variance estimator and the Windmeijer correction are inconsistent under misspecification. That is, the proposed double correction formula provides a convenient way to obtain improved inference under correct specification and robustness against misspecification at the same time.\",\"PeriodicalId\":273058,\"journal\":{\"name\":\"ERN: Model Construction & Estimation (Topic)\",\"volume\":\"72 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ERN: Model Construction & Estimation (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3443554\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Model Construction & Estimation (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3443554","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

我们提出了一种新的有限样本修正方差估计,用于线性广义矩法(GMM),包括一步估计、两步估计和迭代估计。我们的公式在Windmeijer(2005)常用的有限样本修正之上,还修正了方差估计中的过度识别偏差,该修正来自估计有效权矩阵的偏差,因此是双重修正。导出了形式随机展开式,以显示所提出的双校正估计展开式中一些高阶项的方差。此外,所提出的双重修正对力矩条件的错配具有鲁棒性。而传统的方差估计量和Windmeijer校正量在不规范情况下是不一致的。也就是说,所提出的双校正公式提供了一种方便的方法,可以在正确规范下获得改进的推理,同时具有对错规范的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Doubly Corrected Robust Variance Estimator for Linear GMM
We propose a new finite sample corrected variance estimator for the linear generalized method of moments (GMM) including the one-step, two-step, and iterated estimators. Our formula additionally corrects for the over-identification bias in variance estimation on top of the commonly used finite sample correction of Windmeijer (2005) which corrects for the bias from estimating the efficient weight matrix, so is doubly corrected. Formal stochastic expansions are derived to show the proposed double correction estimates the variance of some higher-order terms in the expansion. In addition, the proposed double correction provides robustness to misspecification of the moment condition. In contrast, the conventional variance estimator and the Windmeijer correction are inconsistent under misspecification. That is, the proposed double correction formula provides a convenient way to obtain improved inference under correct specification and robustness against misspecification at the same time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信