{"title":"能量耗散的超材料拓扑优化","authors":"Qi Chen, Xianmin Zhang, Benliang Zhu, Hongchuan Zhang, Rixin Wang, Yanfeng Shi, Ling Xiong","doi":"10.1109/MARSS.2018.8481152","DOIUrl":null,"url":null,"abstract":"A novel design concept for buckling-induced mechanical metamaterials for energy dissipation is presented. A topology optimization formulation is proposed, where the force-displacement curves of the unit cells of the metamaterials are tailored to maximize the buckling-induced dissipated energy in a mass constraint. A two-phase algorithm is proposed to find the optimized result from a uniform initial guess. The optimized design has a larger amount of buckling-induced dissipated energy than the structural prototypes based on the designers' intuition.","PeriodicalId":118389,"journal":{"name":"2018 International Conference on Manipulation, Automation and Robotics at Small Scales (MARSS)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Topology Optimization of Metamaterials for Energy Dissipation\",\"authors\":\"Qi Chen, Xianmin Zhang, Benliang Zhu, Hongchuan Zhang, Rixin Wang, Yanfeng Shi, Ling Xiong\",\"doi\":\"10.1109/MARSS.2018.8481152\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A novel design concept for buckling-induced mechanical metamaterials for energy dissipation is presented. A topology optimization formulation is proposed, where the force-displacement curves of the unit cells of the metamaterials are tailored to maximize the buckling-induced dissipated energy in a mass constraint. A two-phase algorithm is proposed to find the optimized result from a uniform initial guess. The optimized design has a larger amount of buckling-induced dissipated energy than the structural prototypes based on the designers' intuition.\",\"PeriodicalId\":118389,\"journal\":{\"name\":\"2018 International Conference on Manipulation, Automation and Robotics at Small Scales (MARSS)\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 International Conference on Manipulation, Automation and Robotics at Small Scales (MARSS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MARSS.2018.8481152\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Manipulation, Automation and Robotics at Small Scales (MARSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MARSS.2018.8481152","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Topology Optimization of Metamaterials for Energy Dissipation
A novel design concept for buckling-induced mechanical metamaterials for energy dissipation is presented. A topology optimization formulation is proposed, where the force-displacement curves of the unit cells of the metamaterials are tailored to maximize the buckling-induced dissipated energy in a mass constraint. A two-phase algorithm is proposed to find the optimized result from a uniform initial guess. The optimized design has a larger amount of buckling-induced dissipated energy than the structural prototypes based on the designers' intuition.