{"title":"生物医学应用中基于内容的图像检索的尺度不变描述符","authors":"N. Brancati, Diego Gragnaniello, L. Verdoliva","doi":"10.1109/SITIS.2016.39","DOIUrl":null,"url":null,"abstract":"Content based image retrieval (CBIR) is an application of computer vision which tackles the problem of recovering images in large datasets based on a similarity criterion. The role of CBIR in biomedical field is potentially very important, since every day large volumes of different types of images are produced. An effective and reliable CBIR system can help the decision-making process and support the diagnosis made by the clinician, thanks to the possibility to analyze images similar to the one under test. Many successful CBIR systems use features based on local descriptors for image retrieval. In this work, a Bag-of-Words encoding paradigm based on the Scale Invariant Descriptor (SID) is used to extract robust features from the images. For the evaluation of the proposed technique, three datasets in biomedical field have been used: OASIS, which is an MRI dataset, Emphysema and NEMA, which are instead CT datasets. In order to evaluate the effectiveness and the reliability of the proposed technique also in other application fields, some experiments have been carried out on the ORL facial image dataset, used for biometric applications. The results show that the proposed technique outperforms or is comparable to state-of-art CBIR techniques.","PeriodicalId":403704,"journal":{"name":"2016 12th International Conference on Signal-Image Technology & Internet-Based Systems (SITIS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Scale Invariant Descriptor for Content Based Image Retrieval in Biomedical Applications\",\"authors\":\"N. Brancati, Diego Gragnaniello, L. Verdoliva\",\"doi\":\"10.1109/SITIS.2016.39\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Content based image retrieval (CBIR) is an application of computer vision which tackles the problem of recovering images in large datasets based on a similarity criterion. The role of CBIR in biomedical field is potentially very important, since every day large volumes of different types of images are produced. An effective and reliable CBIR system can help the decision-making process and support the diagnosis made by the clinician, thanks to the possibility to analyze images similar to the one under test. Many successful CBIR systems use features based on local descriptors for image retrieval. In this work, a Bag-of-Words encoding paradigm based on the Scale Invariant Descriptor (SID) is used to extract robust features from the images. For the evaluation of the proposed technique, three datasets in biomedical field have been used: OASIS, which is an MRI dataset, Emphysema and NEMA, which are instead CT datasets. In order to evaluate the effectiveness and the reliability of the proposed technique also in other application fields, some experiments have been carried out on the ORL facial image dataset, used for biometric applications. The results show that the proposed technique outperforms or is comparable to state-of-art CBIR techniques.\",\"PeriodicalId\":403704,\"journal\":{\"name\":\"2016 12th International Conference on Signal-Image Technology & Internet-Based Systems (SITIS)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 12th International Conference on Signal-Image Technology & Internet-Based Systems (SITIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SITIS.2016.39\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 12th International Conference on Signal-Image Technology & Internet-Based Systems (SITIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SITIS.2016.39","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
摘要
基于内容的图像检索(Content based image retrieval, CBIR)是计算机视觉的一种应用,它解决了基于相似准则的大型数据集中图像的恢复问题。由于每天都会产生大量不同类型的图像,因此CBIR在生物医学领域的作用可能非常重要。由于可以分析与被测图像相似的图像,有效可靠的CBIR系统可以帮助决策过程并支持临床医生的诊断。许多成功的CBIR系统使用基于局部描述符的特征进行图像检索。在这项工作中,使用基于尺度不变描述子(SID)的词袋编码范式从图像中提取鲁棒特征。为了评估所提出的技术,使用了生物医学领域的三个数据集:OASIS (MRI数据集),Emphysema和NEMA (CT数据集)。为了评估该技术在其他应用领域的有效性和可靠性,在ORL面部图像数据集上进行了一些实验,用于生物识别应用。结果表明,所提出的技术优于或可与最先进的CBIR技术相媲美。
Scale Invariant Descriptor for Content Based Image Retrieval in Biomedical Applications
Content based image retrieval (CBIR) is an application of computer vision which tackles the problem of recovering images in large datasets based on a similarity criterion. The role of CBIR in biomedical field is potentially very important, since every day large volumes of different types of images are produced. An effective and reliable CBIR system can help the decision-making process and support the diagnosis made by the clinician, thanks to the possibility to analyze images similar to the one under test. Many successful CBIR systems use features based on local descriptors for image retrieval. In this work, a Bag-of-Words encoding paradigm based on the Scale Invariant Descriptor (SID) is used to extract robust features from the images. For the evaluation of the proposed technique, three datasets in biomedical field have been used: OASIS, which is an MRI dataset, Emphysema and NEMA, which are instead CT datasets. In order to evaluate the effectiveness and the reliability of the proposed technique also in other application fields, some experiments have been carried out on the ORL facial image dataset, used for biometric applications. The results show that the proposed technique outperforms or is comparable to state-of-art CBIR techniques.