基于最近邻算法的粒子群中文文本分类

Shi Cheng, Yuhui Shi, Quande Qin, T. Ting
{"title":"基于最近邻算法的粒子群中文文本分类","authors":"Shi Cheng, Yuhui Shi, Quande Qin, T. Ting","doi":"10.1109/SIS.2013.6615174","DOIUrl":null,"url":null,"abstract":"In this paper, the nearest neighbor method on Chinese text categorization is formulated as an optimization problem. The particle swarm optimization is utilized to optimize a nearest neighbor classifier to solve the Chinese text categorization problem. The parameter k was first optimized to obtain the minimum error, then the categorization problem is formulated as a discrete, constrained, and single objective optimization problem. Each dimension of solution vector is dependent on each other in the solution space. The parameter k and the number of labeled examples for each class are optimized together to reach the minimum categorization error. In the experiment, with the utilization of particle swarm optimization, the performance of a nearest neighbor algorithm can be improved, and the algorithm can obtain the minimum categorization error rate.","PeriodicalId":444765,"journal":{"name":"2013 IEEE Symposium on Swarm Intelligence (SIS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Particle swarm optimization based nearest neighbor algorithm on Chinese text categorization\",\"authors\":\"Shi Cheng, Yuhui Shi, Quande Qin, T. Ting\",\"doi\":\"10.1109/SIS.2013.6615174\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the nearest neighbor method on Chinese text categorization is formulated as an optimization problem. The particle swarm optimization is utilized to optimize a nearest neighbor classifier to solve the Chinese text categorization problem. The parameter k was first optimized to obtain the minimum error, then the categorization problem is formulated as a discrete, constrained, and single objective optimization problem. Each dimension of solution vector is dependent on each other in the solution space. The parameter k and the number of labeled examples for each class are optimized together to reach the minimum categorization error. In the experiment, with the utilization of particle swarm optimization, the performance of a nearest neighbor algorithm can be improved, and the algorithm can obtain the minimum categorization error rate.\",\"PeriodicalId\":444765,\"journal\":{\"name\":\"2013 IEEE Symposium on Swarm Intelligence (SIS)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE Symposium on Swarm Intelligence (SIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SIS.2013.6615174\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Symposium on Swarm Intelligence (SIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIS.2013.6615174","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文将中文文本分类的最近邻方法表述为一个优化问题。利用粒子群算法优化最近邻分类器来解决中文文本分类问题。首先对参数k进行优化以获得最小误差,然后将分类问题表述为一个离散、约束、单目标的优化问题。解向量的每个维在解空间中是相互依赖的。对每个类的参数k和标记样例的数量进行共同优化,以达到最小的分类误差。在实验中,利用粒子群优化可以提高最近邻算法的性能,使算法获得最小的分类错误率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Particle swarm optimization based nearest neighbor algorithm on Chinese text categorization
In this paper, the nearest neighbor method on Chinese text categorization is formulated as an optimization problem. The particle swarm optimization is utilized to optimize a nearest neighbor classifier to solve the Chinese text categorization problem. The parameter k was first optimized to obtain the minimum error, then the categorization problem is formulated as a discrete, constrained, and single objective optimization problem. Each dimension of solution vector is dependent on each other in the solution space. The parameter k and the number of labeled examples for each class are optimized together to reach the minimum categorization error. In the experiment, with the utilization of particle swarm optimization, the performance of a nearest neighbor algorithm can be improved, and the algorithm can obtain the minimum categorization error rate.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信