基于非负矩阵分解的图像金字塔加速光谱解混

S. Bauer, F. P. León
{"title":"基于非负矩阵分解的图像金字塔加速光谱解混","authors":"S. Bauer, F. P. León","doi":"10.1109/WHISPERS.2016.8071705","DOIUrl":null,"url":null,"abstract":"In the last couple of years, methods based on nonnegative matrix factorization (NMF) have been used for spectral unmixing of hyperspectral images. We propose a meta-method based on image pyramids for the acceleration of the unmixing calculation. Starting the factorization from a spatially coarse level, neighboring pixel spectra are averaged and considered as new pixel spectra. In the subsequent iterations, the resolution is increased step by step, which means that the previous lower resolution outcomes can be regarded as close-to-optimal starting points for the higher resolution iterations. By performing many steps on lower resolution levels, only few steps have to be calculated on the original size data. We will demonstrate the application of the new method, showing that for both spatial and spectral extensions of NMF, the proposed method in most cases leads to equal objective function values in less time. The unmixing calculation can be accelerated up to several times. Due to the fact that the objective functions of different NMF algorithms exhibit more or less local minima, not all NMF-based unmixing algorithms are equally well-suited for the application of the proposed method.","PeriodicalId":369281,"journal":{"name":"2016 8th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Using image pyramids for the acceleration of spectral unmixing based on nonnegative matrix factorization\",\"authors\":\"S. Bauer, F. P. León\",\"doi\":\"10.1109/WHISPERS.2016.8071705\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the last couple of years, methods based on nonnegative matrix factorization (NMF) have been used for spectral unmixing of hyperspectral images. We propose a meta-method based on image pyramids for the acceleration of the unmixing calculation. Starting the factorization from a spatially coarse level, neighboring pixel spectra are averaged and considered as new pixel spectra. In the subsequent iterations, the resolution is increased step by step, which means that the previous lower resolution outcomes can be regarded as close-to-optimal starting points for the higher resolution iterations. By performing many steps on lower resolution levels, only few steps have to be calculated on the original size data. We will demonstrate the application of the new method, showing that for both spatial and spectral extensions of NMF, the proposed method in most cases leads to equal objective function values in less time. The unmixing calculation can be accelerated up to several times. Due to the fact that the objective functions of different NMF algorithms exhibit more or less local minima, not all NMF-based unmixing algorithms are equally well-suited for the application of the proposed method.\",\"PeriodicalId\":369281,\"journal\":{\"name\":\"2016 8th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 8th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WHISPERS.2016.8071705\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 8th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WHISPERS.2016.8071705","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

近年来,基于非负矩阵分解(NMF)的方法被用于高光谱图像的光谱分解。为了加速解混计算,提出了一种基于图像金字塔的元方法。从空间粗糙水平开始分解,对相邻像元光谱进行平均,作为新的像元光谱。在随后的迭代中,分辨率逐步增加,这意味着之前的低分辨率结果可以被视为接近最优的高分辨率迭代的起点。通过在较低分辨率水平上执行许多步骤,只需在原始尺寸数据上计算很少的步骤。我们将演示新方法的应用,表明对于NMF的空间和光谱扩展,所提出的方法在大多数情况下在更短的时间内导致相等的目标函数值。解混计算速度可提高数倍。由于不同NMF算法的目标函数或多或少都具有局部极小值,因此并非所有基于NMF的解混算法都同样适合本文方法的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Using image pyramids for the acceleration of spectral unmixing based on nonnegative matrix factorization
In the last couple of years, methods based on nonnegative matrix factorization (NMF) have been used for spectral unmixing of hyperspectral images. We propose a meta-method based on image pyramids for the acceleration of the unmixing calculation. Starting the factorization from a spatially coarse level, neighboring pixel spectra are averaged and considered as new pixel spectra. In the subsequent iterations, the resolution is increased step by step, which means that the previous lower resolution outcomes can be regarded as close-to-optimal starting points for the higher resolution iterations. By performing many steps on lower resolution levels, only few steps have to be calculated on the original size data. We will demonstrate the application of the new method, showing that for both spatial and spectral extensions of NMF, the proposed method in most cases leads to equal objective function values in less time. The unmixing calculation can be accelerated up to several times. Due to the fact that the objective functions of different NMF algorithms exhibit more or less local minima, not all NMF-based unmixing algorithms are equally well-suited for the application of the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信