基于直流模型的输电网扩展规划的分支定界算法

M. J. Rider, Ariovaldo V. Garcia, R. Romero
{"title":"基于直流模型的输电网扩展规划的分支定界算法","authors":"M. J. Rider, Ariovaldo V. Garcia, R. Romero","doi":"10.1109/PCT.2007.4538512","DOIUrl":null,"url":null,"abstract":"This paper presents an algorithm to solve the network transmission system expansion planning problem using the DC model which is a mixed non-linear integer programming problem. The major feature of this work is the use of a Branch- and-Bound (B&B) algorithm to directly solve mixed non-linear integer problems. An efficient interior point method is used to solve the non-linear programming problem at each node of the B&B tree. Tests with several known systems are presented to illustrate the performance of the proposed method.","PeriodicalId":356805,"journal":{"name":"2007 IEEE Lausanne Power Tech","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Branch and Bound Algorithm for Transmission Network Expansion Planning Using DC Model\",\"authors\":\"M. J. Rider, Ariovaldo V. Garcia, R. Romero\",\"doi\":\"10.1109/PCT.2007.4538512\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an algorithm to solve the network transmission system expansion planning problem using the DC model which is a mixed non-linear integer programming problem. The major feature of this work is the use of a Branch- and-Bound (B&B) algorithm to directly solve mixed non-linear integer problems. An efficient interior point method is used to solve the non-linear programming problem at each node of the B&B tree. Tests with several known systems are presented to illustrate the performance of the proposed method.\",\"PeriodicalId\":356805,\"journal\":{\"name\":\"2007 IEEE Lausanne Power Tech\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE Lausanne Power Tech\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PCT.2007.4538512\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE Lausanne Power Tech","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PCT.2007.4538512","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

本文提出了一种利用直流模型求解网络传输系统扩展规划问题的算法,该问题是一个混合非线性整数规划问题。这项工作的主要特点是使用分支定界(B&B)算法直接求解混合非线性整数问题。采用一种有效的内点法求解B&B树各节点的非线性规划问题。在几个已知系统上进行了测试,以说明所提方法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Branch and Bound Algorithm for Transmission Network Expansion Planning Using DC Model
This paper presents an algorithm to solve the network transmission system expansion planning problem using the DC model which is a mixed non-linear integer programming problem. The major feature of this work is the use of a Branch- and-Bound (B&B) algorithm to directly solve mixed non-linear integer problems. An efficient interior point method is used to solve the non-linear programming problem at each node of the B&B tree. Tests with several known systems are presented to illustrate the performance of the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信