不确定非线性系统的预测补偿自适应神经网络控制

Lin Niu
{"title":"不确定非线性系统的预测补偿自适应神经网络控制","authors":"Lin Niu","doi":"10.1109/ICACI.2012.6463221","DOIUrl":null,"url":null,"abstract":"The paper proposes an adaptive neural network control method. The proposed controller is based on the Generalized predictive control (GPC) algorithm, and a recurrent neural network (NN) is used to approximate the unknown nonlinear plant. To provide good accuracy in identification of unknown model parameters, an online adaptive law is proposed to adapt the consequent part of the NN. The stability of closed-loop control system is studied and proved via the Lyapunov stability theory. A nonlinear process is used to validate and demonstrate the performance of the proposed control. The simulation results show that the proposed method has good performance and disturbance rejection capacity in industrial processes and outperforms the PID and the classical GPC controllers.","PeriodicalId":404759,"journal":{"name":"2012 IEEE Fifth International Conference on Advanced Computational Intelligence (ICACI)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Adaptive neural network control with predictive compensation for uncertain nonlinear systems\",\"authors\":\"Lin Niu\",\"doi\":\"10.1109/ICACI.2012.6463221\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper proposes an adaptive neural network control method. The proposed controller is based on the Generalized predictive control (GPC) algorithm, and a recurrent neural network (NN) is used to approximate the unknown nonlinear plant. To provide good accuracy in identification of unknown model parameters, an online adaptive law is proposed to adapt the consequent part of the NN. The stability of closed-loop control system is studied and proved via the Lyapunov stability theory. A nonlinear process is used to validate and demonstrate the performance of the proposed control. The simulation results show that the proposed method has good performance and disturbance rejection capacity in industrial processes and outperforms the PID and the classical GPC controllers.\",\"PeriodicalId\":404759,\"journal\":{\"name\":\"2012 IEEE Fifth International Conference on Advanced Computational Intelligence (ICACI)\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE Fifth International Conference on Advanced Computational Intelligence (ICACI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICACI.2012.6463221\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE Fifth International Conference on Advanced Computational Intelligence (ICACI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICACI.2012.6463221","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

提出了一种自适应神经网络控制方法。该控制器基于广义预测控制(GPC)算法,并使用递归神经网络(NN)逼近未知的非线性对象。为了保证对未知模型参数的识别精度,提出了一种在线自适应律来适应神经网络的后续部分。利用李雅普诺夫稳定性理论研究并证明了闭环控制系统的稳定性。一个非线性过程被用来验证和演示所提出的控制的性能。仿真结果表明,该方法在工业过程中具有良好的性能和抗扰能力,优于PID和经典GPC控制器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptive neural network control with predictive compensation for uncertain nonlinear systems
The paper proposes an adaptive neural network control method. The proposed controller is based on the Generalized predictive control (GPC) algorithm, and a recurrent neural network (NN) is used to approximate the unknown nonlinear plant. To provide good accuracy in identification of unknown model parameters, an online adaptive law is proposed to adapt the consequent part of the NN. The stability of closed-loop control system is studied and proved via the Lyapunov stability theory. A nonlinear process is used to validate and demonstrate the performance of the proposed control. The simulation results show that the proposed method has good performance and disturbance rejection capacity in industrial processes and outperforms the PID and the classical GPC controllers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信