利用Twitter数据估计短期流动与长期迁移的关系

L. Fiorio, G. Abel, Jixuan Cai, E. Zagheni, Ingmar Weber, Guillermo Vinué
{"title":"利用Twitter数据估计短期流动与长期迁移的关系","authors":"L. Fiorio, G. Abel, Jixuan Cai, E. Zagheni, Ingmar Weber, Guillermo Vinué","doi":"10.1145/3091478.3091496","DOIUrl":null,"url":null,"abstract":"Migration estimates are sensitive to definitions of time interval and duration. For example, when does a tourist become a migrant? As a result, harmonizing across different kinds of estimates or data sources can be difficult. Moreover in countries like the United States, that do not have a national registry system, estimates of internal migration typically rely on survey data that can require over a year from data collection to publication. In addition, each survey can ask only a limited set questions about migration (e.g., where did you live a year ago? where did you live five years ago?). We leverage a sample of geo-referenced Twitter tweets for about 62,000 users, spanning the period between 2010 and 2016, to estimate a series of US internal migration flows under varying time intervals and durations. Our findings, expressed in terms of 'migration curves', document, for the first time, the relationships between short-term mobility and long-term migration. The results open new avenues for demographic research. More specifically, future directions include the use of migration curves to produce probabilistic estimates of long-term migration from short-term (and vice versa) and to nowcast mobility rates at different levels of spatial and temporal granularity using a combination of previously published American Community Survey data and up-to-date data from a panel of Twitter users.","PeriodicalId":165747,"journal":{"name":"Proceedings of the 2017 ACM on Web Science Conference","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"42","resultStr":"{\"title\":\"Using Twitter Data to Estimate the Relationship between Short-term Mobility and Long-term Migration\",\"authors\":\"L. Fiorio, G. Abel, Jixuan Cai, E. Zagheni, Ingmar Weber, Guillermo Vinué\",\"doi\":\"10.1145/3091478.3091496\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Migration estimates are sensitive to definitions of time interval and duration. For example, when does a tourist become a migrant? As a result, harmonizing across different kinds of estimates or data sources can be difficult. Moreover in countries like the United States, that do not have a national registry system, estimates of internal migration typically rely on survey data that can require over a year from data collection to publication. In addition, each survey can ask only a limited set questions about migration (e.g., where did you live a year ago? where did you live five years ago?). We leverage a sample of geo-referenced Twitter tweets for about 62,000 users, spanning the period between 2010 and 2016, to estimate a series of US internal migration flows under varying time intervals and durations. Our findings, expressed in terms of 'migration curves', document, for the first time, the relationships between short-term mobility and long-term migration. The results open new avenues for demographic research. More specifically, future directions include the use of migration curves to produce probabilistic estimates of long-term migration from short-term (and vice versa) and to nowcast mobility rates at different levels of spatial and temporal granularity using a combination of previously published American Community Survey data and up-to-date data from a panel of Twitter users.\",\"PeriodicalId\":165747,\"journal\":{\"name\":\"Proceedings of the 2017 ACM on Web Science Conference\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"42\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2017 ACM on Web Science Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3091478.3091496\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2017 ACM on Web Science Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3091478.3091496","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 42

摘要

迁移估计对时间间隔和持续时间的定义很敏感。例如,什么时候旅游者变成了移民?因此,协调不同类型的估计或数据源可能很困难。此外,在像美国这样没有国家登记系统的国家,对国内移民的估计通常依赖于调查数据,从数据收集到公布可能需要一年多的时间。此外,每次调查只能问一些关于移民的有限问题(例如,一年前你住在哪里?五年前你住在哪里?我们利用2010年至2016年期间约62,000名用户的地理参考Twitter推文样本,来估计不同时间间隔和持续时间下的一系列美国内部迁移流。我们的研究结果,用“迁移曲线”来表达,首次证明了短期流动和长期迁移之间的关系。研究结果为人口统计学研究开辟了新的途径。更具体地说,未来的方向包括使用迁移曲线从短期(反之亦然)产生长期迁移的概率估计,以及使用先前发布的美国社区调查数据和来自Twitter用户小组的最新数据的组合,在不同的空间和时间粒度水平上预测迁移率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Using Twitter Data to Estimate the Relationship between Short-term Mobility and Long-term Migration
Migration estimates are sensitive to definitions of time interval and duration. For example, when does a tourist become a migrant? As a result, harmonizing across different kinds of estimates or data sources can be difficult. Moreover in countries like the United States, that do not have a national registry system, estimates of internal migration typically rely on survey data that can require over a year from data collection to publication. In addition, each survey can ask only a limited set questions about migration (e.g., where did you live a year ago? where did you live five years ago?). We leverage a sample of geo-referenced Twitter tweets for about 62,000 users, spanning the period between 2010 and 2016, to estimate a series of US internal migration flows under varying time intervals and durations. Our findings, expressed in terms of 'migration curves', document, for the first time, the relationships between short-term mobility and long-term migration. The results open new avenues for demographic research. More specifically, future directions include the use of migration curves to produce probabilistic estimates of long-term migration from short-term (and vice versa) and to nowcast mobility rates at different levels of spatial and temporal granularity using a combination of previously published American Community Survey data and up-to-date data from a panel of Twitter users.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信