基于空间-颜色高斯混合模型的单眼视频前景/背景分割

Ting Yu, Cha Zhang, Michael F. Cohen, Y. Rui, Ying Wu
{"title":"基于空间-颜色高斯混合模型的单眼视频前景/背景分割","authors":"Ting Yu, Cha Zhang, Michael F. Cohen, Y. Rui, Ying Wu","doi":"10.1109/WMVC.2007.27","DOIUrl":null,"url":null,"abstract":"This paper presents a new approach to segmenting monocular videos captured by static or hand-held cameras filming large moving non-rigid foreground objects. The foreground and background objects are modeled using spatialcolor Gaussian mixture models (SCGMM), and segmented using the graph cut algorithm, which minimizes a Markov random field energy function containing the SCGMM models. In view of the existence of a modeling gap between the available SCGMMs and segmentation task of a new frame, one major contribution of our paper is the introduction of a novel foreground/background SCGMM joint tracking algorithm to bridge this space, which greatly improves the segmentation performance in case of complex or rapid motion. Specifically, we propose to combine the two SCGMMs into a generative model of the whole image, and maximize the joint data likelihood using a constrained Expectation- Maximization (EM) algorithm. The effectiveness of the proposed algorithm is demonstrated on a variety of sequences.","PeriodicalId":177842,"journal":{"name":"2007 IEEE Workshop on Motion and Video Computing (WMVC'07)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"78","resultStr":"{\"title\":\"Monocular Video Foreground/Background Segmentation by Tracking Spatial-Color Gaussian Mixture Models\",\"authors\":\"Ting Yu, Cha Zhang, Michael F. Cohen, Y. Rui, Ying Wu\",\"doi\":\"10.1109/WMVC.2007.27\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a new approach to segmenting monocular videos captured by static or hand-held cameras filming large moving non-rigid foreground objects. The foreground and background objects are modeled using spatialcolor Gaussian mixture models (SCGMM), and segmented using the graph cut algorithm, which minimizes a Markov random field energy function containing the SCGMM models. In view of the existence of a modeling gap between the available SCGMMs and segmentation task of a new frame, one major contribution of our paper is the introduction of a novel foreground/background SCGMM joint tracking algorithm to bridge this space, which greatly improves the segmentation performance in case of complex or rapid motion. Specifically, we propose to combine the two SCGMMs into a generative model of the whole image, and maximize the joint data likelihood using a constrained Expectation- Maximization (EM) algorithm. The effectiveness of the proposed algorithm is demonstrated on a variety of sequences.\",\"PeriodicalId\":177842,\"journal\":{\"name\":\"2007 IEEE Workshop on Motion and Video Computing (WMVC'07)\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-02-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"78\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE Workshop on Motion and Video Computing (WMVC'07)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WMVC.2007.27\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE Workshop on Motion and Video Computing (WMVC'07)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WMVC.2007.27","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 78

摘要

本文提出了一种分割静态或手持摄像机拍摄的大型移动非刚性前景物体的单目视频的新方法。前景和背景对象使用空间彩色高斯混合模型(SCGMM)建模,并使用图切算法进行分割,该算法最小化包含SCGMM模型的马尔可夫随机场能量函数。鉴于现有的SCGMM模型与新帧的分割任务之间存在建模差距,本文的一个主要贡献是引入了一种新的前景/背景SCGMM联合跟踪算法来弥补这一空白,大大提高了复杂或快速运动情况下的分割性能。具体来说,我们建议将两个scgmm组合成整个图像的生成模型,并使用约束期望最大化(EM)算法最大化联合数据的可能性。在多种序列上验证了该算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Monocular Video Foreground/Background Segmentation by Tracking Spatial-Color Gaussian Mixture Models
This paper presents a new approach to segmenting monocular videos captured by static or hand-held cameras filming large moving non-rigid foreground objects. The foreground and background objects are modeled using spatialcolor Gaussian mixture models (SCGMM), and segmented using the graph cut algorithm, which minimizes a Markov random field energy function containing the SCGMM models. In view of the existence of a modeling gap between the available SCGMMs and segmentation task of a new frame, one major contribution of our paper is the introduction of a novel foreground/background SCGMM joint tracking algorithm to bridge this space, which greatly improves the segmentation performance in case of complex or rapid motion. Specifically, we propose to combine the two SCGMMs into a generative model of the whole image, and maximize the joint data likelihood using a constrained Expectation- Maximization (EM) algorithm. The effectiveness of the proposed algorithm is demonstrated on a variety of sequences.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信