一种基于统计独立性的无参考图像质量评价方法

Y. Chu, X. Mou, Wei Hong, Z. Ji
{"title":"一种基于统计独立性的无参考图像质量评价方法","authors":"Y. Chu, X. Mou, Wei Hong, Z. Ji","doi":"10.1109/VCIP.2012.6410790","DOIUrl":null,"url":null,"abstract":"No-reference image quality assessment (NR IQA) has wide applicability to many problems. This paper focuses on the mechanism of divisive normalization transform (DNT) which simulates the behavior of visual cortex neurons to extract the independent components of natural images, analyzes the difference between the statistics of neighboring DNT coefficients of the images of a variety of distortion, and proposes a novel solution for NR IQA metric design. We demonstrate that measuring the statistical independence between neighboring DNT coefficients could provide features useful for quality assessment. The performance of the proposed method is quite satisfactory when it was tested on the popular LIVE, CSIQ and TID2008 databases. The experimental results are fairly competitive with the existing NR IQA metrics.","PeriodicalId":103073,"journal":{"name":"2012 Visual Communications and Image Processing","volume":"62 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"A novel no-reference image quality assessment metric based on statistical independence\",\"authors\":\"Y. Chu, X. Mou, Wei Hong, Z. Ji\",\"doi\":\"10.1109/VCIP.2012.6410790\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"No-reference image quality assessment (NR IQA) has wide applicability to many problems. This paper focuses on the mechanism of divisive normalization transform (DNT) which simulates the behavior of visual cortex neurons to extract the independent components of natural images, analyzes the difference between the statistics of neighboring DNT coefficients of the images of a variety of distortion, and proposes a novel solution for NR IQA metric design. We demonstrate that measuring the statistical independence between neighboring DNT coefficients could provide features useful for quality assessment. The performance of the proposed method is quite satisfactory when it was tested on the popular LIVE, CSIQ and TID2008 databases. The experimental results are fairly competitive with the existing NR IQA metrics.\",\"PeriodicalId\":103073,\"journal\":{\"name\":\"2012 Visual Communications and Image Processing\",\"volume\":\"62 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 Visual Communications and Image Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VCIP.2012.6410790\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Visual Communications and Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VCIP.2012.6410790","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

无参考图像质量评价(NR IQA)具有广泛的适用性。本文重点研究了分裂归一化变换(DNT)的机制,该方法模拟视觉皮层神经元的行为,提取自然图像的独立分量,分析了不同失真图像相邻DNT系数统计量的差异,提出了一种新的NR IQA度量设计方案。我们证明了测量相邻DNT系数之间的统计独立性可以为质量评估提供有用的特征。在LIVE、CSIQ和TID2008数据库上进行了测试,结果令人满意。实验结果与现有的NR IQA指标具有相当的竞争力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A novel no-reference image quality assessment metric based on statistical independence
No-reference image quality assessment (NR IQA) has wide applicability to many problems. This paper focuses on the mechanism of divisive normalization transform (DNT) which simulates the behavior of visual cortex neurons to extract the independent components of natural images, analyzes the difference between the statistics of neighboring DNT coefficients of the images of a variety of distortion, and proposes a novel solution for NR IQA metric design. We demonstrate that measuring the statistical independence between neighboring DNT coefficients could provide features useful for quality assessment. The performance of the proposed method is quite satisfactory when it was tested on the popular LIVE, CSIQ and TID2008 databases. The experimental results are fairly competitive with the existing NR IQA metrics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信