一种基于核心查询聚类和词邻近度的精度提高方法

Kye-Hun Jang, Kyung-Soon Lee
{"title":"一种基于核心查询聚类和词邻近度的精度提高方法","authors":"Kye-Hun Jang, Kyung-Soon Lee","doi":"10.3745/KIPSTB.2010.17B.5.399","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a method for precision improvement based on core clusters and term proximity. The method is composed by three steps. The initial retrieval documents are clustered based on query term combination, which occurred in the document. Core clusters are selected by using proximity between query terms. Then, the documents in core clusters are reranked based on context information of query. On TREC AP test collection, experimental results in precision at the top documents(P@100) show that the proposed method improved 11.2% over the language model.","PeriodicalId":122700,"journal":{"name":"The Kips Transactions:partb","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Method for Precision Improvement Based on Core Query Clusters and Term Proximity\",\"authors\":\"Kye-Hun Jang, Kyung-Soon Lee\",\"doi\":\"10.3745/KIPSTB.2010.17B.5.399\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a method for precision improvement based on core clusters and term proximity. The method is composed by three steps. The initial retrieval documents are clustered based on query term combination, which occurred in the document. Core clusters are selected by using proximity between query terms. Then, the documents in core clusters are reranked based on context information of query. On TREC AP test collection, experimental results in precision at the top documents(P@100) show that the proposed method improved 11.2% over the language model.\",\"PeriodicalId\":122700,\"journal\":{\"name\":\"The Kips Transactions:partb\",\"volume\":\"64 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Kips Transactions:partb\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3745/KIPSTB.2010.17B.5.399\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Kips Transactions:partb","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3745/KIPSTB.2010.17B.5.399","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们提出了一种基于核心聚类和术语接近度的精度提高方法。该方法分为三个步骤。初始检索文档是根据文档中出现的查询词组合进行聚类的。通过使用查询词之间的接近度来选择核心集群。然后,根据查询的上下文信息对核心集群中的文档进行重新排序。在TREC AP测试集上,顶部文档(P@100)的精度实验结果表明,该方法比语言模型提高了11.2%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Method for Precision Improvement Based on Core Query Clusters and Term Proximity
In this paper, we propose a method for precision improvement based on core clusters and term proximity. The method is composed by three steps. The initial retrieval documents are clustered based on query term combination, which occurred in the document. Core clusters are selected by using proximity between query terms. Then, the documents in core clusters are reranked based on context information of query. On TREC AP test collection, experimental results in precision at the top documents(P@100) show that the proposed method improved 11.2% over the language model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信