基于风险敏感的培养正交卡尔曼滤波器的非线性估计

Swati, S. Bhaumik
{"title":"基于风险敏感的培养正交卡尔曼滤波器的非线性估计","authors":"Swati, S. Bhaumik","doi":"10.1109/CCA.2013.6662805","DOIUrl":null,"url":null,"abstract":"This paper proposes a novel method to minimize the risk sensitive cost function based on cubature quadrature algorithm. The proposed filter is named as risk sensitive cubature quadrature Kalman filter (RSCQKF). The theory and formulation of the RSCQKF have been presented in this paper. The performance of proposed risk sensitive filter is compared with its risk neutral counterpart for a ballistic target tracking problem. The simulation results show that for wrongly modeled process noise parameters, the RSCQKF outperforms the cubature quadrature Kalman filter (CQKF).","PeriodicalId":379739,"journal":{"name":"2013 IEEE International Conference on Control Applications (CCA)","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Nonlinear estimation using risk sensitive formulation of cubature quadrature Kalman filter\",\"authors\":\"Swati, S. Bhaumik\",\"doi\":\"10.1109/CCA.2013.6662805\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a novel method to minimize the risk sensitive cost function based on cubature quadrature algorithm. The proposed filter is named as risk sensitive cubature quadrature Kalman filter (RSCQKF). The theory and formulation of the RSCQKF have been presented in this paper. The performance of proposed risk sensitive filter is compared with its risk neutral counterpart for a ballistic target tracking problem. The simulation results show that for wrongly modeled process noise parameters, the RSCQKF outperforms the cubature quadrature Kalman filter (CQKF).\",\"PeriodicalId\":379739,\"journal\":{\"name\":\"2013 IEEE International Conference on Control Applications (CCA)\",\"volume\":\"53 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE International Conference on Control Applications (CCA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCA.2013.6662805\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference on Control Applications (CCA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCA.2013.6662805","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文提出了一种基于培养正交算法的最小化风险敏感代价函数的新方法。该滤波器被命名为风险敏感培养正交卡尔曼滤波器(RSCQKF)。本文介绍了RSCQKF的理论和公式。针对弹道目标跟踪问题,将所提出的风险敏感滤波器与风险中性滤波器的性能进行了比较。仿真结果表明,对于错误建模的过程噪声参数,RSCQKF优于培养正交卡尔曼滤波器(CQKF)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nonlinear estimation using risk sensitive formulation of cubature quadrature Kalman filter
This paper proposes a novel method to minimize the risk sensitive cost function based on cubature quadrature algorithm. The proposed filter is named as risk sensitive cubature quadrature Kalman filter (RSCQKF). The theory and formulation of the RSCQKF have been presented in this paper. The performance of proposed risk sensitive filter is compared with its risk neutral counterpart for a ballistic target tracking problem. The simulation results show that for wrongly modeled process noise parameters, the RSCQKF outperforms the cubature quadrature Kalman filter (CQKF).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信