基于粒子群自适应动态规划的非线性系统容错控制

Haowei Lin, Qiuye Wu, Derong Liu, Bo Zhao, Qinmin Yang
{"title":"基于粒子群自适应动态规划的非线性系统容错控制","authors":"Haowei Lin, Qiuye Wu, Derong Liu, Bo Zhao, Qinmin Yang","doi":"10.1109/ICICIP47338.2019.9012176","DOIUrl":null,"url":null,"abstract":"This paper develops a fault tolerant control (FTC) scheme based on adaptive dynamic programming(ADP) employing the particle swarm optimization (PSO) for nonlinear systems with actuator failures. Using the well-known ADP method, the solution of Hamilton-Jacobi-Bellman equation (HJBE) is approximated by constructing a critic neural network (CNN) which is trained by the PSO algorithm. Compared to the existing gradient descent-trained CNN, the PSO-trained CNN has a higher success rate in solving the HJBE. In order to eliminate the impact of the actuator failure, the ADP-based FTC strategy is developed to guarantee the closed-loop system to be ultimately uniformly bounded (UUB). Finally, a simulation example is provided to demonstrate the effectiveness of the developed method.","PeriodicalId":431872,"journal":{"name":"2019 Tenth International Conference on Intelligent Control and Information Processing (ICICIP)","volume":"s3-14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Fault Tolerant Control for Nonlinear Systems Based on Adaptive Dynamic Programming with Particle Swarm Optimization\",\"authors\":\"Haowei Lin, Qiuye Wu, Derong Liu, Bo Zhao, Qinmin Yang\",\"doi\":\"10.1109/ICICIP47338.2019.9012176\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper develops a fault tolerant control (FTC) scheme based on adaptive dynamic programming(ADP) employing the particle swarm optimization (PSO) for nonlinear systems with actuator failures. Using the well-known ADP method, the solution of Hamilton-Jacobi-Bellman equation (HJBE) is approximated by constructing a critic neural network (CNN) which is trained by the PSO algorithm. Compared to the existing gradient descent-trained CNN, the PSO-trained CNN has a higher success rate in solving the HJBE. In order to eliminate the impact of the actuator failure, the ADP-based FTC strategy is developed to guarantee the closed-loop system to be ultimately uniformly bounded (UUB). Finally, a simulation example is provided to demonstrate the effectiveness of the developed method.\",\"PeriodicalId\":431872,\"journal\":{\"name\":\"2019 Tenth International Conference on Intelligent Control and Information Processing (ICICIP)\",\"volume\":\"s3-14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 Tenth International Conference on Intelligent Control and Information Processing (ICICIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICICIP47338.2019.9012176\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Tenth International Conference on Intelligent Control and Information Processing (ICICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICIP47338.2019.9012176","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

提出了一种基于自适应动态规划(ADP)的基于粒子群优化(PSO)的非线性系统容错控制方案。利用著名的ADP方法,通过构造一个批评性神经网络(CNN)来逼近Hamilton-Jacobi-Bellman方程(HJBE)的解,并使用PSO算法进行训练。与现有的梯度下降训练的CNN相比,pso训练的CNN在求解HJBE问题上具有更高的成功率。为了消除执行器失效的影响,提出了基于adp的FTC策略,保证闭环系统最终均匀有界(UUB)。最后,通过仿真实例验证了所提方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fault Tolerant Control for Nonlinear Systems Based on Adaptive Dynamic Programming with Particle Swarm Optimization
This paper develops a fault tolerant control (FTC) scheme based on adaptive dynamic programming(ADP) employing the particle swarm optimization (PSO) for nonlinear systems with actuator failures. Using the well-known ADP method, the solution of Hamilton-Jacobi-Bellman equation (HJBE) is approximated by constructing a critic neural network (CNN) which is trained by the PSO algorithm. Compared to the existing gradient descent-trained CNN, the PSO-trained CNN has a higher success rate in solving the HJBE. In order to eliminate the impact of the actuator failure, the ADP-based FTC strategy is developed to guarantee the closed-loop system to be ultimately uniformly bounded (UUB). Finally, a simulation example is provided to demonstrate the effectiveness of the developed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信