利用主成分分析增强频谱传感

A. Nasser, A. Mansour, K. Yao, H. Abdallah, M. Chaitou, H. Charara
{"title":"利用主成分分析增强频谱传感","authors":"A. Nasser, A. Mansour, K. Yao, H. Abdallah, M. Chaitou, H. Charara","doi":"10.1109/ISSPIT.2016.7886046","DOIUrl":null,"url":null,"abstract":"In this paper, Principal Component Analysis (PCA) techniques are introduced in the context of Cognitive Radio to enhance the Spectrum Sensing performance. PCA step increases the SNR of the Primary User's signal and, consequently, enhances the Spectrum Sensing performance. We applied PCA as a combination scheme of a multi-antenna Cognitive Radio system. Analytic results will be presented to show the effectiveness of this technique by deriving the new SNR obtained after applying PCA, which can be considered a pre-processing step for a classical Spectrum Sensing algorithm. The effect of PCA is examined with well known detectors in Spectrum Sensing, where the proposed technique shows its efficiency. The performance of the proposed technique is corroborated through many simulations.","PeriodicalId":371691,"journal":{"name":"2016 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT)","volume":"74 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Spectrum Sensing enhancement using Principal Component Analysis\",\"authors\":\"A. Nasser, A. Mansour, K. Yao, H. Abdallah, M. Chaitou, H. Charara\",\"doi\":\"10.1109/ISSPIT.2016.7886046\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, Principal Component Analysis (PCA) techniques are introduced in the context of Cognitive Radio to enhance the Spectrum Sensing performance. PCA step increases the SNR of the Primary User's signal and, consequently, enhances the Spectrum Sensing performance. We applied PCA as a combination scheme of a multi-antenna Cognitive Radio system. Analytic results will be presented to show the effectiveness of this technique by deriving the new SNR obtained after applying PCA, which can be considered a pre-processing step for a classical Spectrum Sensing algorithm. The effect of PCA is examined with well known detectors in Spectrum Sensing, where the proposed technique shows its efficiency. The performance of the proposed technique is corroborated through many simulations.\",\"PeriodicalId\":371691,\"journal\":{\"name\":\"2016 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT)\",\"volume\":\"74 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISSPIT.2016.7886046\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSPIT.2016.7886046","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

本文将主成分分析(PCA)技术引入到认知无线电中,以提高其频谱感知性能。主成分分析步骤提高了主用户信号的信噪比,从而提高了频谱感知性能。我们将主成分分析作为多天线认知无线电系统的组合方案。分析结果将显示该技术的有效性,通过推导应用主成分分析后获得的新信噪比,这可以被认为是经典频谱感知算法的预处理步骤。用光谱传感中已知的检测器检验了主成分分析的效果,其中提出的技术显示了它的有效性。仿真结果验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spectrum Sensing enhancement using Principal Component Analysis
In this paper, Principal Component Analysis (PCA) techniques are introduced in the context of Cognitive Radio to enhance the Spectrum Sensing performance. PCA step increases the SNR of the Primary User's signal and, consequently, enhances the Spectrum Sensing performance. We applied PCA as a combination scheme of a multi-antenna Cognitive Radio system. Analytic results will be presented to show the effectiveness of this technique by deriving the new SNR obtained after applying PCA, which can be considered a pre-processing step for a classical Spectrum Sensing algorithm. The effect of PCA is examined with well known detectors in Spectrum Sensing, where the proposed technique shows its efficiency. The performance of the proposed technique is corroborated through many simulations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信