低内存自适应前缀编码

T. Gagie, Marek Karpinski, Yakov Nekrich
{"title":"低内存自适应前缀编码","authors":"T. Gagie, Marek Karpinski, Yakov Nekrich","doi":"10.1109/DCC.2009.61","DOIUrl":null,"url":null,"abstract":"In this paper we study the adaptive prefix coding problem in  cases where the size of the input alphabet is large.  We present an online prefix coding algorithm that uses  $O(\\sigma^{1 / \\lambda + \\epsilon}) $ bits of space for any constants $\\eps≫0$, $\\lambda≫1$, and encodes the string of symbols in  $O(\\log \\log \\sigma)$ time per symbol  \\emph{in the worst case}, where $\\sigma$ is  the size of the alphabet.  The upper bound on the encoding length is  $\\lambda n H (s) +(\\lambda / \\ln 2 + 2 + \\epsilon) n +  O (\\sigma^{1 / \\lambda} \\log^2 \\sigma)$ bits.","PeriodicalId":377880,"journal":{"name":"2009 Data Compression Conference","volume":"84 11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Low-Memory Adaptive Prefix Coding\",\"authors\":\"T. Gagie, Marek Karpinski, Yakov Nekrich\",\"doi\":\"10.1109/DCC.2009.61\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we study the adaptive prefix coding problem in  cases where the size of the input alphabet is large.  We present an online prefix coding algorithm that uses  $O(\\\\sigma^{1 / \\\\lambda + \\\\epsilon}) $ bits of space for any constants $\\\\eps≫0$, $\\\\lambda≫1$, and encodes the string of symbols in  $O(\\\\log \\\\log \\\\sigma)$ time per symbol  \\\\emph{in the worst case}, where $\\\\sigma$ is  the size of the alphabet.  The upper bound on the encoding length is  $\\\\lambda n H (s) +(\\\\lambda / \\\\ln 2 + 2 + \\\\epsilon) n +  O (\\\\sigma^{1 / \\\\lambda} \\\\log^2 \\\\sigma)$ bits.\",\"PeriodicalId\":377880,\"journal\":{\"name\":\"2009 Data Compression Conference\",\"volume\":\"84 11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 Data Compression Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DCC.2009.61\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Data Compression Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DCC.2009.61","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文研究了输入字母较大情况下的自适应前缀编码问题。我们提出了一种在线前缀编码算法,该算法对任何常量$\eps≫0$、$\lambda≫1$使用$O(\sigma^{1 / \lambda + \epsilon}) $位空间,并且在\emph{最坏的情况下},以$O(\log \log \sigma)$时间对每个符号进行编码,其中$\sigma$是字母表的大小。编码长度的上限是$\lambda n H (s) +(\lambda / \ln 2 + 2 + \epsilon) n +  O (\sigma^{1 / \lambda} \log^2 \sigma)$位。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Low-Memory Adaptive Prefix Coding
In this paper we study the adaptive prefix coding problem in  cases where the size of the input alphabet is large.  We present an online prefix coding algorithm that uses  $O(\sigma^{1 / \lambda + \epsilon}) $ bits of space for any constants $\eps≫0$, $\lambda≫1$, and encodes the string of symbols in  $O(\log \log \sigma)$ time per symbol  \emph{in the worst case}, where $\sigma$ is  the size of the alphabet.  The upper bound on the encoding length is  $\lambda n H (s) +(\lambda / \ln 2 + 2 + \epsilon) n +  O (\sigma^{1 / \lambda} \log^2 \sigma)$ bits.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信