{"title":"低内存自适应前缀编码","authors":"T. Gagie, Marek Karpinski, Yakov Nekrich","doi":"10.1109/DCC.2009.61","DOIUrl":null,"url":null,"abstract":"In this paper we study the adaptive prefix coding problem in cases where the size of the input alphabet is large. We present an online prefix coding algorithm that uses $O(\\sigma^{1 / \\lambda + \\epsilon}) $ bits of space for any constants $\\eps≫0$, $\\lambda≫1$, and encodes the string of symbols in $O(\\log \\log \\sigma)$ time per symbol \\emph{in the worst case}, where $\\sigma$ is the size of the alphabet. The upper bound on the encoding length is $\\lambda n H (s) +(\\lambda / \\ln 2 + 2 + \\epsilon) n + O (\\sigma^{1 / \\lambda} \\log^2 \\sigma)$ bits.","PeriodicalId":377880,"journal":{"name":"2009 Data Compression Conference","volume":"84 11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Low-Memory Adaptive Prefix Coding\",\"authors\":\"T. Gagie, Marek Karpinski, Yakov Nekrich\",\"doi\":\"10.1109/DCC.2009.61\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we study the adaptive prefix coding problem in cases where the size of the input alphabet is large. We present an online prefix coding algorithm that uses $O(\\\\sigma^{1 / \\\\lambda + \\\\epsilon}) $ bits of space for any constants $\\\\eps≫0$, $\\\\lambda≫1$, and encodes the string of symbols in $O(\\\\log \\\\log \\\\sigma)$ time per symbol \\\\emph{in the worst case}, where $\\\\sigma$ is the size of the alphabet. The upper bound on the encoding length is $\\\\lambda n H (s) +(\\\\lambda / \\\\ln 2 + 2 + \\\\epsilon) n + O (\\\\sigma^{1 / \\\\lambda} \\\\log^2 \\\\sigma)$ bits.\",\"PeriodicalId\":377880,\"journal\":{\"name\":\"2009 Data Compression Conference\",\"volume\":\"84 11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 Data Compression Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DCC.2009.61\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Data Compression Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DCC.2009.61","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
摘要
本文研究了输入字母较大情况下的自适应前缀编码问题。我们提出了一种在线前缀编码算法,该算法对任何常量$\eps≫0$、$\lambda≫1$使用$O(\sigma^{1 / \lambda + \epsilon}) $位空间,并且在\emph{最坏的情况下},以$O(\log \log \sigma)$时间对每个符号进行编码,其中$\sigma$是字母表的大小。编码长度的上限是$\lambda n H (s) +(\lambda / \ln 2 + 2 + \epsilon) n + O (\sigma^{1 / \lambda} \log^2 \sigma)$位。
In this paper we study the adaptive prefix coding problem in cases where the size of the input alphabet is large. We present an online prefix coding algorithm that uses $O(\sigma^{1 / \lambda + \epsilon}) $ bits of space for any constants $\eps≫0$, $\lambda≫1$, and encodes the string of symbols in $O(\log \log \sigma)$ time per symbol \emph{in the worst case}, where $\sigma$ is the size of the alphabet. The upper bound on the encoding length is $\lambda n H (s) +(\lambda / \ln 2 + 2 + \epsilon) n + O (\sigma^{1 / \lambda} \log^2 \sigma)$ bits.