使用哈希方法改进从up中提取蛋白质-蛋白质相互作用数据集

Gautam Kumar, Rajnish Kumar, Manoj Kumar Pal, Pragya Gupta, Rahul Gupta, S. Mehra
{"title":"使用哈希方法改进从up中提取蛋白质-蛋白质相互作用数据集","authors":"Gautam Kumar, Rajnish Kumar, Manoj Kumar Pal, Pragya Gupta, Rahul Gupta, S. Mehra","doi":"10.1109/BSB.2016.7552135","DOIUrl":null,"url":null,"abstract":"The machine learning approaches frequently address the extraction of training datasets from the online databases to build computational or mathematical models. The training data downloaded from the online server and databases are most often carry redundancy and noise. Heuristics methods are most common to filter the data. Dataset filtering process is time consuming and researcher has to do this tedious work. We propose a more generic filter to detect frequent exceptions to increase the quality of generated datasets based on Perl Hash Programming and regular expression methodology. Future development of noise and error reduction approaches is important to make use of the full potential of available database knowledge. We make use of the datasets of protein - protein interaction generated by The University of Kansas Proteomics Service (KUPS).","PeriodicalId":363820,"journal":{"name":"2016 International Conference on Bioinformatics and Systems Biology (BSB)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improving extraction of protein — Protein interaction datasets from KUPS using hashing approach\",\"authors\":\"Gautam Kumar, Rajnish Kumar, Manoj Kumar Pal, Pragya Gupta, Rahul Gupta, S. Mehra\",\"doi\":\"10.1109/BSB.2016.7552135\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The machine learning approaches frequently address the extraction of training datasets from the online databases to build computational or mathematical models. The training data downloaded from the online server and databases are most often carry redundancy and noise. Heuristics methods are most common to filter the data. Dataset filtering process is time consuming and researcher has to do this tedious work. We propose a more generic filter to detect frequent exceptions to increase the quality of generated datasets based on Perl Hash Programming and regular expression methodology. Future development of noise and error reduction approaches is important to make use of the full potential of available database knowledge. We make use of the datasets of protein - protein interaction generated by The University of Kansas Proteomics Service (KUPS).\",\"PeriodicalId\":363820,\"journal\":{\"name\":\"2016 International Conference on Bioinformatics and Systems Biology (BSB)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-08-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 International Conference on Bioinformatics and Systems Biology (BSB)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BSB.2016.7552135\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Conference on Bioinformatics and Systems Biology (BSB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BSB.2016.7552135","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

机器学习方法经常从在线数据库中提取训练数据集,以建立计算或数学模型。从在线服务器和数据库下载的训练数据往往带有冗余和噪声。启发式方法是过滤数据最常用的方法。数据集过滤过程非常耗时,研究人员必须完成这项繁琐的工作。我们提出了一个更通用的过滤器来检测频繁的异常,以提高基于Perl哈希编程和正则表达式方法生成的数据集的质量。减少噪声和错误方法的未来发展对于充分利用现有数据库知识的潜力非常重要。我们利用了堪萨斯大学蛋白质组学服务(up)生成的蛋白质-蛋白质相互作用数据集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improving extraction of protein — Protein interaction datasets from KUPS using hashing approach
The machine learning approaches frequently address the extraction of training datasets from the online databases to build computational or mathematical models. The training data downloaded from the online server and databases are most often carry redundancy and noise. Heuristics methods are most common to filter the data. Dataset filtering process is time consuming and researcher has to do this tedious work. We propose a more generic filter to detect frequent exceptions to increase the quality of generated datasets based on Perl Hash Programming and regular expression methodology. Future development of noise and error reduction approaches is important to make use of the full potential of available database knowledge. We make use of the datasets of protein - protein interaction generated by The University of Kansas Proteomics Service (KUPS).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信