{"title":"被动和主动传感-红外探测器中等离子体光栅的几何形状和波长相关的聚焦深度","authors":"Patrick R. Kennedy, T. Laurvick","doi":"10.1109/NAECON.2017.8268765","DOIUrl":null,"url":null,"abstract":"The objective for this research is to determine a relationship between plasmonic grating geometries and the wavelength-dependent focus depth. This research is focused on enhancing the signal collected by infrared detectors by using a metal grating as a planar lens to focus light in the detecting region of the substrate. This can be used to maintain a thinner absorbing region and possibly to create multi-color imaging in a single pixel.","PeriodicalId":306091,"journal":{"name":"2017 IEEE National Aerospace and Electronics Conference (NAECON)","volume":"2014 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Passive and active sensing — Plasmonic grating geometries and wavelength-dependent focus depth in IR detectors\",\"authors\":\"Patrick R. Kennedy, T. Laurvick\",\"doi\":\"10.1109/NAECON.2017.8268765\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The objective for this research is to determine a relationship between plasmonic grating geometries and the wavelength-dependent focus depth. This research is focused on enhancing the signal collected by infrared detectors by using a metal grating as a planar lens to focus light in the detecting region of the substrate. This can be used to maintain a thinner absorbing region and possibly to create multi-color imaging in a single pixel.\",\"PeriodicalId\":306091,\"journal\":{\"name\":\"2017 IEEE National Aerospace and Electronics Conference (NAECON)\",\"volume\":\"2014 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE National Aerospace and Electronics Conference (NAECON)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NAECON.2017.8268765\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE National Aerospace and Electronics Conference (NAECON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NAECON.2017.8268765","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Passive and active sensing — Plasmonic grating geometries and wavelength-dependent focus depth in IR detectors
The objective for this research is to determine a relationship between plasmonic grating geometries and the wavelength-dependent focus depth. This research is focused on enhancing the signal collected by infrared detectors by using a metal grating as a planar lens to focus light in the detecting region of the substrate. This can be used to maintain a thinner absorbing region and possibly to create multi-color imaging in a single pixel.