应用卫星遥感和图像处理技术了解南极洲威德尔海区海冰变化

S. Tom, H G Virani
{"title":"应用卫星遥感和图像处理技术了解南极洲威德尔海区海冰变化","authors":"S. Tom, H G Virani","doi":"10.1109/ICECA.2018.8474797","DOIUrl":null,"url":null,"abstract":"The spatial and time-based variations of sea ice concentration / cover (SIC) and sea ice extent (SIE) trend were analysed using satellite-derived passive microwave radiometers data over a period of 37-years (1979–2015). In contrast to global warming sea-ice around Antarctica exhibits an expansion whereas in the sector-wise studies it shows increasing and decreasing patterns. In total, SIE of Antarctica exhibits positive yearly trends ($\\mathbf{24.9}\\pm \\mathbf{4.4\\ 10}^{\\mathbf{3}}\\mathbf{km}^{\\mathbf{2}}\\ \\mathrm{year}^{-1};\\ \\mathbf{2.1}\\pm \\mathbf{0.4}\\ \\%\\mathrm{decade}^{-1}$). The Weddell sea sector shows an increase in SIE trend $(\\mathbf{5.2}\\pm \\mathbf{1.8\\ 10}^{\\mathbf{3}}\\mathbf{km}^{\\mathbf{2}}\\ \\mathrm{year}^{-1};\\ \\mathbf{2.6}\\pm \\mathbf{0.9}\\ \\%\\mathbf{decade}^{\\mathbf{-1}})$, attributed to atmosphere and ocean sea ice interactions such as air temperature, pressure, ocean currents and wind components. The seasonal trends of this sector show both positive and negative trends controlled by the thermodynamic effect of winds. Significant positive trends were observed in the summer $\\mathbf{(20.4}\\pm \\mathbf{5.4\\ 10}^{\\mathbf{3}}\\mathbf{km}^{\\mathbf{2}}\\mathbf{year}^\\mathbf{{-1}})$ and the spring $\\mathbf{(1.9}\\pm \\mathbf{5.3\\ 10}^{\\mathbf{3}}\\mathbf{km}^{\\mathbf{2}}\\ \\mathrm{year}^{-1}$) seasons. In contrast, negative trends were observed in the autumn $\\mathbf{(-12.4}\\pm \\mathbf{9.5\\ 10}^{\\mathbf{3}}\\mathbf{km}^{\\mathbf{2}}\\mathbf{year}^{\\mathbf{-1}})$ and the winter $\\mathbf{(-2.5}\\pm \\mathbf{4.9\\ 10}^{\\mathbf{3}}\\mathbf{km}^{\\mathbf{2}}\\ \\mathrm{year}^{-1}$) seasons. Remote forcing's such as El Niño–Southern Oscillation (ENSO), Southern Annular Mode (SAM), Southern Oscillation Index (SOI) and temperature indices contribute to the increase of sea ice by producing variabilities in the wind fields. The study demonstrates the application of satellite remote sensing techniques to understand the sea ice variabilities and dynamics of southern hemisphere using high resolution physical and climatic forcing's.","PeriodicalId":272623,"journal":{"name":"2018 Second International Conference on Electronics, Communication and Aerospace Technology (ICECA)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application of Satellite Remote Sensing and Image Processing Techniques to Understand the Sea Ice Variability in the Weddell Sea Sector of Antarctica\",\"authors\":\"S. Tom, H G Virani\",\"doi\":\"10.1109/ICECA.2018.8474797\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The spatial and time-based variations of sea ice concentration / cover (SIC) and sea ice extent (SIE) trend were analysed using satellite-derived passive microwave radiometers data over a period of 37-years (1979–2015). In contrast to global warming sea-ice around Antarctica exhibits an expansion whereas in the sector-wise studies it shows increasing and decreasing patterns. In total, SIE of Antarctica exhibits positive yearly trends ($\\\\mathbf{24.9}\\\\pm \\\\mathbf{4.4\\\\ 10}^{\\\\mathbf{3}}\\\\mathbf{km}^{\\\\mathbf{2}}\\\\ \\\\mathrm{year}^{-1};\\\\ \\\\mathbf{2.1}\\\\pm \\\\mathbf{0.4}\\\\ \\\\%\\\\mathrm{decade}^{-1}$). The Weddell sea sector shows an increase in SIE trend $(\\\\mathbf{5.2}\\\\pm \\\\mathbf{1.8\\\\ 10}^{\\\\mathbf{3}}\\\\mathbf{km}^{\\\\mathbf{2}}\\\\ \\\\mathrm{year}^{-1};\\\\ \\\\mathbf{2.6}\\\\pm \\\\mathbf{0.9}\\\\ \\\\%\\\\mathbf{decade}^{\\\\mathbf{-1}})$, attributed to atmosphere and ocean sea ice interactions such as air temperature, pressure, ocean currents and wind components. The seasonal trends of this sector show both positive and negative trends controlled by the thermodynamic effect of winds. Significant positive trends were observed in the summer $\\\\mathbf{(20.4}\\\\pm \\\\mathbf{5.4\\\\ 10}^{\\\\mathbf{3}}\\\\mathbf{km}^{\\\\mathbf{2}}\\\\mathbf{year}^\\\\mathbf{{-1}})$ and the spring $\\\\mathbf{(1.9}\\\\pm \\\\mathbf{5.3\\\\ 10}^{\\\\mathbf{3}}\\\\mathbf{km}^{\\\\mathbf{2}}\\\\ \\\\mathrm{year}^{-1}$) seasons. In contrast, negative trends were observed in the autumn $\\\\mathbf{(-12.4}\\\\pm \\\\mathbf{9.5\\\\ 10}^{\\\\mathbf{3}}\\\\mathbf{km}^{\\\\mathbf{2}}\\\\mathbf{year}^{\\\\mathbf{-1}})$ and the winter $\\\\mathbf{(-2.5}\\\\pm \\\\mathbf{4.9\\\\ 10}^{\\\\mathbf{3}}\\\\mathbf{km}^{\\\\mathbf{2}}\\\\ \\\\mathrm{year}^{-1}$) seasons. Remote forcing's such as El Niño–Southern Oscillation (ENSO), Southern Annular Mode (SAM), Southern Oscillation Index (SOI) and temperature indices contribute to the increase of sea ice by producing variabilities in the wind fields. The study demonstrates the application of satellite remote sensing techniques to understand the sea ice variabilities and dynamics of southern hemisphere using high resolution physical and climatic forcing's.\",\"PeriodicalId\":272623,\"journal\":{\"name\":\"2018 Second International Conference on Electronics, Communication and Aerospace Technology (ICECA)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-03-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 Second International Conference on Electronics, Communication and Aerospace Technology (ICECA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICECA.2018.8474797\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Second International Conference on Electronics, Communication and Aerospace Technology (ICECA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICECA.2018.8474797","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

利用卫星源无源微波辐射计数据分析了37 a(1979-2015)的海冰浓度/覆盖(SIC)和海冰范围(SIE)的时空变化趋势。与全球变暖相反,南极洲周围的海冰呈现扩张,而在部门研究中,它呈现增加和减少的模式。总的来说,南极洲的SIE呈现正的年趋势($\mathbf{24.9}\pm \mathbf{4.4\ 10}^{\mathbf{3}}\mathbf{km}^{\mathbf{2}}\ \mathbf{year}^{-1};\ \mathbf{2.1}\pm \mathbf{0.4}\ \%\ mathbf{decade}^{-1}$)。威德尔海扇区显示出SIE趋势$(\mathbf{5.2}\pm \mathbf{1.8\ 10}^{\mathbf{3}}\mathbf{km}^{\mathbf{2}}\ \mathbf{年}^{-1};\ \mathbf{2.6}\pm \mathbf{0.9}\ \%\mathbf{decade}^{\mathbf{-1}})$的增加,归因于大气和海洋海冰相互作用,如气温、压力、洋流和风分量。在风的热力作用下,该扇区的季节趋势既有正趋势,也有负趋势。夏季$\mathbf{(20.4}\pm \mathbf{5.4\ 10}^{\mathbf{3}}\mathbf{km}^{\mathbf{2}}\mathbf{year}^ {\mathbf{{-1}})$和春季$\mathbf{(1.9}\pm \mathbf{5.3\ 10}^{\mathbf{3}}\mathbf{km}} {\mathbf{2}}\mathbf{year}}{-1}$)季节均呈现显著的正向趋势。相反,秋季$\mathbf{(-12.4}\pm \mathbf{9.5\ 10}^{\mathbf{3}}\mathbf{km}^{\mathbf{-1}})$和冬季$\mathbf{(-2.5}\pm \mathbf{4.9\ 10}}^{\mathbf{3}}\mathbf{km}} {\mathbf{2}}\mathbf{year}^{-1}$)季节呈负相关趋势。El Niño-Southern涛动(ENSO)、南环模(SAM)、南方涛动指数(SOI)和温度指数等远强迫通过产生风场的变率来促进海冰的增加。该研究展示了卫星遥感技术在利用高分辨率物理强迫和气候强迫来了解南半球海冰变化和动态方面的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Application of Satellite Remote Sensing and Image Processing Techniques to Understand the Sea Ice Variability in the Weddell Sea Sector of Antarctica
The spatial and time-based variations of sea ice concentration / cover (SIC) and sea ice extent (SIE) trend were analysed using satellite-derived passive microwave radiometers data over a period of 37-years (1979–2015). In contrast to global warming sea-ice around Antarctica exhibits an expansion whereas in the sector-wise studies it shows increasing and decreasing patterns. In total, SIE of Antarctica exhibits positive yearly trends ($\mathbf{24.9}\pm \mathbf{4.4\ 10}^{\mathbf{3}}\mathbf{km}^{\mathbf{2}}\ \mathrm{year}^{-1};\ \mathbf{2.1}\pm \mathbf{0.4}\ \%\mathrm{decade}^{-1}$). The Weddell sea sector shows an increase in SIE trend $(\mathbf{5.2}\pm \mathbf{1.8\ 10}^{\mathbf{3}}\mathbf{km}^{\mathbf{2}}\ \mathrm{year}^{-1};\ \mathbf{2.6}\pm \mathbf{0.9}\ \%\mathbf{decade}^{\mathbf{-1}})$, attributed to atmosphere and ocean sea ice interactions such as air temperature, pressure, ocean currents and wind components. The seasonal trends of this sector show both positive and negative trends controlled by the thermodynamic effect of winds. Significant positive trends were observed in the summer $\mathbf{(20.4}\pm \mathbf{5.4\ 10}^{\mathbf{3}}\mathbf{km}^{\mathbf{2}}\mathbf{year}^\mathbf{{-1}})$ and the spring $\mathbf{(1.9}\pm \mathbf{5.3\ 10}^{\mathbf{3}}\mathbf{km}^{\mathbf{2}}\ \mathrm{year}^{-1}$) seasons. In contrast, negative trends were observed in the autumn $\mathbf{(-12.4}\pm \mathbf{9.5\ 10}^{\mathbf{3}}\mathbf{km}^{\mathbf{2}}\mathbf{year}^{\mathbf{-1}})$ and the winter $\mathbf{(-2.5}\pm \mathbf{4.9\ 10}^{\mathbf{3}}\mathbf{km}^{\mathbf{2}}\ \mathrm{year}^{-1}$) seasons. Remote forcing's such as El Niño–Southern Oscillation (ENSO), Southern Annular Mode (SAM), Southern Oscillation Index (SOI) and temperature indices contribute to the increase of sea ice by producing variabilities in the wind fields. The study demonstrates the application of satellite remote sensing techniques to understand the sea ice variabilities and dynamics of southern hemisphere using high resolution physical and climatic forcing's.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信