基于粒子群算法的无线传感器网络拓扑控制

Robert Cristian Abreu, J. Arroyo
{"title":"基于粒子群算法的无线传感器网络拓扑控制","authors":"Robert Cristian Abreu, J. Arroyo","doi":"10.1109/SCCC.2011.2","DOIUrl":null,"url":null,"abstract":"This paper addresses the minimum energy network connectivity (MENC) problem. This problem consists of minimizing the transmission power of each sensor in a wireless network, which results in minimizing the energy consumption of the network, while keeping its global connectivity at the same time. The MENC problem is NP-hard in the strong sense. The NP-hardness of the problem motivates us to develop a heuristic algorithm based on the Particle Swarm Optimization to obtain near-optimal solutions. The proposed heuristic is tested on a set of 50 instances of the problem. The computational results show that our approach is a promising heuristic and it performs better than the classical minimum spanning tree (MST) heuristic.","PeriodicalId":173639,"journal":{"name":"2011 30th International Conference of the Chilean Computer Science Society","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"A Particle Swarm Optimization Algorithm for Topology Control in Wireless Sensor Networks\",\"authors\":\"Robert Cristian Abreu, J. Arroyo\",\"doi\":\"10.1109/SCCC.2011.2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper addresses the minimum energy network connectivity (MENC) problem. This problem consists of minimizing the transmission power of each sensor in a wireless network, which results in minimizing the energy consumption of the network, while keeping its global connectivity at the same time. The MENC problem is NP-hard in the strong sense. The NP-hardness of the problem motivates us to develop a heuristic algorithm based on the Particle Swarm Optimization to obtain near-optimal solutions. The proposed heuristic is tested on a set of 50 instances of the problem. The computational results show that our approach is a promising heuristic and it performs better than the classical minimum spanning tree (MST) heuristic.\",\"PeriodicalId\":173639,\"journal\":{\"name\":\"2011 30th International Conference of the Chilean Computer Science Society\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 30th International Conference of the Chilean Computer Science Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SCCC.2011.2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 30th International Conference of the Chilean Computer Science Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SCCC.2011.2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

本文研究了最小能源网络连通性问题。该问题包括最小化无线网络中每个传感器的传输功率,从而使网络的能量消耗最小化,同时保持其全局连通性。MENC问题在强意义上是NP-hard问题。该问题的np -硬度促使我们开发了一种基于粒子群优化的启发式算法来获得近最优解。提出的启发式在一组50个问题实例上进行了测试。计算结果表明,该方法是一种有前途的启发式算法,其性能优于经典的最小生成树(MST)启发式算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Particle Swarm Optimization Algorithm for Topology Control in Wireless Sensor Networks
This paper addresses the minimum energy network connectivity (MENC) problem. This problem consists of minimizing the transmission power of each sensor in a wireless network, which results in minimizing the energy consumption of the network, while keeping its global connectivity at the same time. The MENC problem is NP-hard in the strong sense. The NP-hardness of the problem motivates us to develop a heuristic algorithm based on the Particle Swarm Optimization to obtain near-optimal solutions. The proposed heuristic is tested on a set of 50 instances of the problem. The computational results show that our approach is a promising heuristic and it performs better than the classical minimum spanning tree (MST) heuristic.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信