曝光不足照片的高质量曝光校正

Qing Zhang, Ganzhao Yuan, Chunxia Xiao, Lei Zhu, Weishi Zheng
{"title":"曝光不足照片的高质量曝光校正","authors":"Qing Zhang, Ganzhao Yuan, Chunxia Xiao, Lei Zhu, Weishi Zheng","doi":"10.1145/3240508.3240595","DOIUrl":null,"url":null,"abstract":"We address the problem of correcting the exposure of underexposed photos. Previous methods have tackled this problem from many different perspectives and achieved remarkable progress. However, they usually fail to produce natural-looking results due to the existence of visual artifacts such as color distortion, loss of detail, exposure inconsistency, etc. We find that the main reason why existing methods induce these artifacts is because they break a perceptually similarity between the input and output. Based on this observation, an effective criterion, termed as perceptually bidirectional similarity (PBS) is proposed. Based on this criterion and the Retinex theory, we cast the exposure correction problem as an illumination estimation optimization, where PBS is defined as three constraints for estimating illumination that can generate the desired result with even exposure, vivid color and clear textures. Qualitative and quantitative comparisons, and the user study demonstrate the superiority of our method over the state-of-the-art methods.","PeriodicalId":339857,"journal":{"name":"Proceedings of the 26th ACM international conference on Multimedia","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"87","resultStr":"{\"title\":\"High-Quality Exposure Correction of Underexposed Photos\",\"authors\":\"Qing Zhang, Ganzhao Yuan, Chunxia Xiao, Lei Zhu, Weishi Zheng\",\"doi\":\"10.1145/3240508.3240595\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We address the problem of correcting the exposure of underexposed photos. Previous methods have tackled this problem from many different perspectives and achieved remarkable progress. However, they usually fail to produce natural-looking results due to the existence of visual artifacts such as color distortion, loss of detail, exposure inconsistency, etc. We find that the main reason why existing methods induce these artifacts is because they break a perceptually similarity between the input and output. Based on this observation, an effective criterion, termed as perceptually bidirectional similarity (PBS) is proposed. Based on this criterion and the Retinex theory, we cast the exposure correction problem as an illumination estimation optimization, where PBS is defined as three constraints for estimating illumination that can generate the desired result with even exposure, vivid color and clear textures. Qualitative and quantitative comparisons, and the user study demonstrate the superiority of our method over the state-of-the-art methods.\",\"PeriodicalId\":339857,\"journal\":{\"name\":\"Proceedings of the 26th ACM international conference on Multimedia\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"87\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 26th ACM international conference on Multimedia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3240508.3240595\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 26th ACM international conference on Multimedia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3240508.3240595","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 87

摘要

我们解决了曝光不足照片的曝光纠正问题。以前的方法从许多不同的角度解决了这个问题,并取得了显著的进展。然而,由于存在视觉伪影,如色彩失真、细节丢失、曝光不一致等,它们通常不能产生自然的效果。我们发现,现有方法导致这些伪影的主要原因是它们打破了输入和输出之间的感知相似性。基于这一观察,提出了一种有效的标准,称为感知双向相似性(PBS)。基于这一准则和Retinex理论,我们将曝光校正问题转化为光照估计优化问题,其中PBS被定义为估算光照的三个约束条件,这些约束条件能够产生所需的光照均匀、色彩鲜艳和纹理清晰的结果。定性和定量比较,以及用户研究证明了我们的方法优于最先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
High-Quality Exposure Correction of Underexposed Photos
We address the problem of correcting the exposure of underexposed photos. Previous methods have tackled this problem from many different perspectives and achieved remarkable progress. However, they usually fail to produce natural-looking results due to the existence of visual artifacts such as color distortion, loss of detail, exposure inconsistency, etc. We find that the main reason why existing methods induce these artifacts is because they break a perceptually similarity between the input and output. Based on this observation, an effective criterion, termed as perceptually bidirectional similarity (PBS) is proposed. Based on this criterion and the Retinex theory, we cast the exposure correction problem as an illumination estimation optimization, where PBS is defined as three constraints for estimating illumination that can generate the desired result with even exposure, vivid color and clear textures. Qualitative and quantitative comparisons, and the user study demonstrate the superiority of our method over the state-of-the-art methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信