{"title":"民间定理神话背后的真相","authors":"Joseph Y. Halpern, R. Pass, Lior Seeman","doi":"10.1145/2554797.2554847","DOIUrl":null,"url":null,"abstract":"We study the problem of computing an ε-Nash equilibrium in repeated games. Earlier work by Borgs et al. [2010] suggests that this problem is intractable. We show that if we make a slight change to their model---modeling the players as polynomial-time Turing machines that maintain state (rather than stateless polynomial-time Turing machines)---and make some standard cryptographic hardness assumptions (the existence of public key encryption), the problem can actually be solved in polynomial time.","PeriodicalId":382856,"journal":{"name":"Proceedings of the 5th conference on Innovations in theoretical computer science","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"The truth behind the myth of the folk theorem\",\"authors\":\"Joseph Y. Halpern, R. Pass, Lior Seeman\",\"doi\":\"10.1145/2554797.2554847\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the problem of computing an ε-Nash equilibrium in repeated games. Earlier work by Borgs et al. [2010] suggests that this problem is intractable. We show that if we make a slight change to their model---modeling the players as polynomial-time Turing machines that maintain state (rather than stateless polynomial-time Turing machines)---and make some standard cryptographic hardness assumptions (the existence of public key encryption), the problem can actually be solved in polynomial time.\",\"PeriodicalId\":382856,\"journal\":{\"name\":\"Proceedings of the 5th conference on Innovations in theoretical computer science\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 5th conference on Innovations in theoretical computer science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2554797.2554847\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 5th conference on Innovations in theoretical computer science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2554797.2554847","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We study the problem of computing an ε-Nash equilibrium in repeated games. Earlier work by Borgs et al. [2010] suggests that this problem is intractable. We show that if we make a slight change to their model---modeling the players as polynomial-time Turing machines that maintain state (rather than stateless polynomial-time Turing machines)---and make some standard cryptographic hardness assumptions (the existence of public key encryption), the problem can actually be solved in polynomial time.