{"title":"基于自顶向下方法的显著性检测新方法","authors":"Mostafa Mohammadpour, S. Mozaffari","doi":"10.1109/IKT.2015.7288763","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a visual saliency detection algorithm which used a learning method. In this model, we train a dictionary for twenty objects from Pascal VOC dataset and then we estimate saliency objects with project each image patch into the space of a dictionary of image patches (basis functions) learned from Pascal VOC dataset. We evaluate our method performance on two dataset along side state-of-the-art saliency detection methods and experimental results show that the proposed saliency model outperforms state-of-the-art saliency models.","PeriodicalId":338953,"journal":{"name":"2015 7th Conference on Information and Knowledge Technology (IKT)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A new method for saliency detection using top-down approach\",\"authors\":\"Mostafa Mohammadpour, S. Mozaffari\",\"doi\":\"10.1109/IKT.2015.7288763\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a visual saliency detection algorithm which used a learning method. In this model, we train a dictionary for twenty objects from Pascal VOC dataset and then we estimate saliency objects with project each image patch into the space of a dictionary of image patches (basis functions) learned from Pascal VOC dataset. We evaluate our method performance on two dataset along side state-of-the-art saliency detection methods and experimental results show that the proposed saliency model outperforms state-of-the-art saliency models.\",\"PeriodicalId\":338953,\"journal\":{\"name\":\"2015 7th Conference on Information and Knowledge Technology (IKT)\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-05-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 7th Conference on Information and Knowledge Technology (IKT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IKT.2015.7288763\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 7th Conference on Information and Knowledge Technology (IKT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IKT.2015.7288763","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A new method for saliency detection using top-down approach
In this paper, we propose a visual saliency detection algorithm which used a learning method. In this model, we train a dictionary for twenty objects from Pascal VOC dataset and then we estimate saliency objects with project each image patch into the space of a dictionary of image patches (basis functions) learned from Pascal VOC dataset. We evaluate our method performance on two dataset along side state-of-the-art saliency detection methods and experimental results show that the proposed saliency model outperforms state-of-the-art saliency models.