基于自顶向下方法的显著性检测新方法

Mostafa Mohammadpour, S. Mozaffari
{"title":"基于自顶向下方法的显著性检测新方法","authors":"Mostafa Mohammadpour, S. Mozaffari","doi":"10.1109/IKT.2015.7288763","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a visual saliency detection algorithm which used a learning method. In this model, we train a dictionary for twenty objects from Pascal VOC dataset and then we estimate saliency objects with project each image patch into the space of a dictionary of image patches (basis functions) learned from Pascal VOC dataset. We evaluate our method performance on two dataset along side state-of-the-art saliency detection methods and experimental results show that the proposed saliency model outperforms state-of-the-art saliency models.","PeriodicalId":338953,"journal":{"name":"2015 7th Conference on Information and Knowledge Technology (IKT)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A new method for saliency detection using top-down approach\",\"authors\":\"Mostafa Mohammadpour, S. Mozaffari\",\"doi\":\"10.1109/IKT.2015.7288763\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a visual saliency detection algorithm which used a learning method. In this model, we train a dictionary for twenty objects from Pascal VOC dataset and then we estimate saliency objects with project each image patch into the space of a dictionary of image patches (basis functions) learned from Pascal VOC dataset. We evaluate our method performance on two dataset along side state-of-the-art saliency detection methods and experimental results show that the proposed saliency model outperforms state-of-the-art saliency models.\",\"PeriodicalId\":338953,\"journal\":{\"name\":\"2015 7th Conference on Information and Knowledge Technology (IKT)\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-05-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 7th Conference on Information and Knowledge Technology (IKT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IKT.2015.7288763\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 7th Conference on Information and Knowledge Technology (IKT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IKT.2015.7288763","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种基于学习方法的视觉显著性检测算法。在该模型中,我们从Pascal VOC数据集中训练了20个对象的字典,然后我们通过将每个图像补丁投影到从Pascal VOC数据集中学习的图像补丁字典(基函数)的空间中来估计显著性对象。我们评估了我们的方法在两个数据集上的性能,以及最先进的显著性检测方法,实验结果表明,我们提出的显著性模型优于最先进的显著性模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A new method for saliency detection using top-down approach
In this paper, we propose a visual saliency detection algorithm which used a learning method. In this model, we train a dictionary for twenty objects from Pascal VOC dataset and then we estimate saliency objects with project each image patch into the space of a dictionary of image patches (basis functions) learned from Pascal VOC dataset. We evaluate our method performance on two dataset along side state-of-the-art saliency detection methods and experimental results show that the proposed saliency model outperforms state-of-the-art saliency models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信