Liam Scanlon, Shiwei Zhang, Xiuzhen Zhang, M. Sanderson
{"title":"跨领域文本摘要的评价","authors":"Liam Scanlon, Shiwei Zhang, Xiuzhen Zhang, M. Sanderson","doi":"10.1145/3397271.3401285","DOIUrl":null,"url":null,"abstract":"Extractive-abstractive hybrid summarization can generate readable, concise summaries for long documents. Extraction-then-abstraction and extraction-with-abstraction are two representative approaches to hybrid summarization. But their general performance is yet to be evaluated by large scale experiments.We examined two state-of-the-art hybrid summarization algorithms from three novel perspectives: we applied them to a form of headline generation not previously tried, we evaluated the generalization of the algorithms by testing them both within and across news domains; and we compared the automatic assessment of the algorithms to human comparative judgments. It is found that an extraction-then-abstraction hybrid approach outperforms an extraction-with-abstraction approach, particularly for cross-domain headline generation.","PeriodicalId":252050,"journal":{"name":"Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Evaluation of Cross Domain Text Summarization\",\"authors\":\"Liam Scanlon, Shiwei Zhang, Xiuzhen Zhang, M. Sanderson\",\"doi\":\"10.1145/3397271.3401285\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Extractive-abstractive hybrid summarization can generate readable, concise summaries for long documents. Extraction-then-abstraction and extraction-with-abstraction are two representative approaches to hybrid summarization. But their general performance is yet to be evaluated by large scale experiments.We examined two state-of-the-art hybrid summarization algorithms from three novel perspectives: we applied them to a form of headline generation not previously tried, we evaluated the generalization of the algorithms by testing them both within and across news domains; and we compared the automatic assessment of the algorithms to human comparative judgments. It is found that an extraction-then-abstraction hybrid approach outperforms an extraction-with-abstraction approach, particularly for cross-domain headline generation.\",\"PeriodicalId\":252050,\"journal\":{\"name\":\"Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3397271.3401285\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3397271.3401285","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Extractive-abstractive hybrid summarization can generate readable, concise summaries for long documents. Extraction-then-abstraction and extraction-with-abstraction are two representative approaches to hybrid summarization. But their general performance is yet to be evaluated by large scale experiments.We examined two state-of-the-art hybrid summarization algorithms from three novel perspectives: we applied them to a form of headline generation not previously tried, we evaluated the generalization of the algorithms by testing them both within and across news domains; and we compared the automatic assessment of the algorithms to human comparative judgments. It is found that an extraction-then-abstraction hybrid approach outperforms an extraction-with-abstraction approach, particularly for cross-domain headline generation.