FPGA性能-生产率差距的表征

Atharva Gondhalekar, Thomas Twomey, W. Feng
{"title":"FPGA性能-生产率差距的表征","authors":"Atharva Gondhalekar, Thomas Twomey, W. Feng","doi":"10.1109/HPEC55821.2022.9926404","DOIUrl":null,"url":null,"abstract":"Today, FPGA vendors provide a C++/C-based programming environment to enhance programmer productivity over using a hardware-description language at the register-transfer level. The common perception is that this enhanced pro-ductivity comes at the expense of significantly less performance, e.g., as much an order of magnitude worse. To characterize this performance-productivity tradeoff, we propose a new composite metric, II, that quantitatively captures the perceived discrepancy between the performance and productivity of any two given FPGA programming languages, e.g., Verilog vs. OpenCL. We then present the implications of our metric via a case study on the design of a Sobel filter (i.e., edge detector) using three different programming models - Verilog, OpenCL, oneAPI - on an Intel Arria 10 GX FPGA accelerator. Relative to performance, our results show that an optimized OpenCL kernel achieves 84% of the performance of an optimized Verilog version of the code on a 7680×4320 (8K) image. Conversely, relative to productivity, OpenCL offers a 6.1 x improvement in productivity over Verilog, while oneAPI improves the productivity by an additional factor of 1.25 x over OpenCL.","PeriodicalId":200071,"journal":{"name":"2022 IEEE High Performance Extreme Computing Conference (HPEC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"On the Characterization of the Performance-Productivity Gap for FPGA\",\"authors\":\"Atharva Gondhalekar, Thomas Twomey, W. Feng\",\"doi\":\"10.1109/HPEC55821.2022.9926404\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Today, FPGA vendors provide a C++/C-based programming environment to enhance programmer productivity over using a hardware-description language at the register-transfer level. The common perception is that this enhanced pro-ductivity comes at the expense of significantly less performance, e.g., as much an order of magnitude worse. To characterize this performance-productivity tradeoff, we propose a new composite metric, II, that quantitatively captures the perceived discrepancy between the performance and productivity of any two given FPGA programming languages, e.g., Verilog vs. OpenCL. We then present the implications of our metric via a case study on the design of a Sobel filter (i.e., edge detector) using three different programming models - Verilog, OpenCL, oneAPI - on an Intel Arria 10 GX FPGA accelerator. Relative to performance, our results show that an optimized OpenCL kernel achieves 84% of the performance of an optimized Verilog version of the code on a 7680×4320 (8K) image. Conversely, relative to productivity, OpenCL offers a 6.1 x improvement in productivity over Verilog, while oneAPI improves the productivity by an additional factor of 1.25 x over OpenCL.\",\"PeriodicalId\":200071,\"journal\":{\"name\":\"2022 IEEE High Performance Extreme Computing Conference (HPEC)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE High Performance Extreme Computing Conference (HPEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HPEC55821.2022.9926404\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE High Performance Extreme Computing Conference (HPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HPEC55821.2022.9926404","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

今天,FPGA供应商提供了基于c++ /C的编程环境,以提高程序员的工作效率,而不是在寄存器传输级别使用硬件描述语言。普遍的看法是,这种提高的生产力是以显著降低的性能为代价的,例如,差了一个数量级。为了描述这种性能-生产力的权衡,我们提出了一个新的复合度量,II,它定量地捕获任何两种给定FPGA编程语言(例如,Verilog与OpenCL)的性能和生产力之间的感知差异。然后,我们通过使用三种不同的编程模型(Verilog, OpenCL, oneAPI)在英特尔Arria 10 GX FPGA加速器上设计Sobel滤波器(即边缘检测器)的案例研究来展示我们指标的含义。相对于性能,我们的结果表明,优化的OpenCL内核在7680×4320 (8K)图像上实现了优化的Verilog版本代码的84%的性能。相反,相对于生产力,OpenCL提供了比Verilog高6.1倍的生产力,而oneAPI比OpenCL提高了1.25倍的生产力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Characterization of the Performance-Productivity Gap for FPGA
Today, FPGA vendors provide a C++/C-based programming environment to enhance programmer productivity over using a hardware-description language at the register-transfer level. The common perception is that this enhanced pro-ductivity comes at the expense of significantly less performance, e.g., as much an order of magnitude worse. To characterize this performance-productivity tradeoff, we propose a new composite metric, II, that quantitatively captures the perceived discrepancy between the performance and productivity of any two given FPGA programming languages, e.g., Verilog vs. OpenCL. We then present the implications of our metric via a case study on the design of a Sobel filter (i.e., edge detector) using three different programming models - Verilog, OpenCL, oneAPI - on an Intel Arria 10 GX FPGA accelerator. Relative to performance, our results show that an optimized OpenCL kernel achieves 84% of the performance of an optimized Verilog version of the code on a 7680×4320 (8K) image. Conversely, relative to productivity, OpenCL offers a 6.1 x improvement in productivity over Verilog, while oneAPI improves the productivity by an additional factor of 1.25 x over OpenCL.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信