基于AI引导雾霾图像识别算法的大气污染智能控制效果评价

Jinpeng Guo, Ting Xu
{"title":"基于AI引导雾霾图像识别算法的大气污染智能控制效果评价","authors":"Jinpeng Guo, Ting Xu","doi":"10.1109/ICOEI51242.2021.9452967","DOIUrl":null,"url":null,"abstract":"Effectiveness evaluation of air pollution intelligent control based on AI guided haze image identification algorithm is conducted in this paper. Firstly, we choose median filter to denoise the image, choose the global fog image enhancement method to enhance the image, and segment the image through the Gaussian mixture model algorithm based on spatio-temporal information. Secondly, the novel AI system is designed for the implementations of the environment sensing framework that can collect the data, pre-process the data and finally extract the overall information for analysis. Lastly, the intelligent control system is desinged and implemented. Reflecting from the simulation results, the proposed monitoring system can comprehensively analysis the data well.","PeriodicalId":420826,"journal":{"name":"2021 5th International Conference on Trends in Electronics and Informatics (ICOEI)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effectiveness Evaluation of Air Pollution Intelligent Control Based on AI Guided Haze Image Identification Algorithm\",\"authors\":\"Jinpeng Guo, Ting Xu\",\"doi\":\"10.1109/ICOEI51242.2021.9452967\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Effectiveness evaluation of air pollution intelligent control based on AI guided haze image identification algorithm is conducted in this paper. Firstly, we choose median filter to denoise the image, choose the global fog image enhancement method to enhance the image, and segment the image through the Gaussian mixture model algorithm based on spatio-temporal information. Secondly, the novel AI system is designed for the implementations of the environment sensing framework that can collect the data, pre-process the data and finally extract the overall information for analysis. Lastly, the intelligent control system is desinged and implemented. Reflecting from the simulation results, the proposed monitoring system can comprehensively analysis the data well.\",\"PeriodicalId\":420826,\"journal\":{\"name\":\"2021 5th International Conference on Trends in Electronics and Informatics (ICOEI)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 5th International Conference on Trends in Electronics and Informatics (ICOEI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICOEI51242.2021.9452967\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 5th International Conference on Trends in Electronics and Informatics (ICOEI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOEI51242.2021.9452967","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文对基于AI引导雾霾图像识别算法的大气污染智能控制效果进行了评价。首先,选择中值滤波对图像进行去噪,选择全局雾图像增强方法对图像进行增强,并通过基于时空信息的高斯混合模型算法对图像进行分割。其次,设计了新的人工智能系统来实现环境感知框架,该系统可以采集数据,对数据进行预处理,最后提取整体信息进行分析。最后,设计并实现了智能控制系统。仿真结果表明,所提出的监测系统能够较好地综合分析数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effectiveness Evaluation of Air Pollution Intelligent Control Based on AI Guided Haze Image Identification Algorithm
Effectiveness evaluation of air pollution intelligent control based on AI guided haze image identification algorithm is conducted in this paper. Firstly, we choose median filter to denoise the image, choose the global fog image enhancement method to enhance the image, and segment the image through the Gaussian mixture model algorithm based on spatio-temporal information. Secondly, the novel AI system is designed for the implementations of the environment sensing framework that can collect the data, pre-process the data and finally extract the overall information for analysis. Lastly, the intelligent control system is desinged and implemented. Reflecting from the simulation results, the proposed monitoring system can comprehensively analysis the data well.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信