在给定定义域内最接近于零的多项式

Hiroshi Sekigawa
{"title":"在给定定义域内最接近于零的多项式","authors":"Hiroshi Sekigawa","doi":"10.1145/1277500.1277527","DOIUrl":null,"url":null,"abstract":"For a real univariate polynomial f and a bounded closed domain D ⊂ C whose boundary <i>C</i> is a simple closed curve of finite length and is represented by a piecewise rational function, we provide a rigorous method for finding the real univariate polynomial <i>f</i> such that <i>f</i> has a zero in <i>D</i> and ||<i>f</i> -- <i>f</i>||∞ is minimal. First, we prove that the absolute value of every coefficient of <i>f</i> -- <i>f</i> is ||<i>f</i> -- <i>f</i>∞ with at most one exception. Using this property and the representation of C, we reduce the problem to solving systems of algebraic equations, each of which consists of two equations with two variables. Furthermore, every equation is of degree one with respect to one of the two variables.","PeriodicalId":308716,"journal":{"name":"Symbolic-Numeric Computation","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"The nearest polynomial with a zero in a given domain\",\"authors\":\"Hiroshi Sekigawa\",\"doi\":\"10.1145/1277500.1277527\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For a real univariate polynomial f and a bounded closed domain D ⊂ C whose boundary <i>C</i> is a simple closed curve of finite length and is represented by a piecewise rational function, we provide a rigorous method for finding the real univariate polynomial <i>f</i> such that <i>f</i> has a zero in <i>D</i> and ||<i>f</i> -- <i>f</i>||∞ is minimal. First, we prove that the absolute value of every coefficient of <i>f</i> -- <i>f</i> is ||<i>f</i> -- <i>f</i>∞ with at most one exception. Using this property and the representation of C, we reduce the problem to solving systems of algebraic equations, each of which consists of two equations with two variables. Furthermore, every equation is of degree one with respect to one of the two variables.\",\"PeriodicalId\":308716,\"journal\":{\"name\":\"Symbolic-Numeric Computation\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Symbolic-Numeric Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1277500.1277527\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Symbolic-Numeric Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1277500.1277527","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

对于边界C为有限长度的简单闭曲线并由分段有理函数表示的实单变量多项式f和有界闭域D∧C,我们提供了一种求实单变量多项式f的严格方法,使得f在D中为零且||f—f||∞为极小值。首先,我们证明了f—f的每一个系数的绝对值都是||f—f∞,最多有一个例外。利用这一性质和C的表示,我们将问题简化为求解代数方程组,每个代数方程组由两个具有两个变量的方程组成。此外,每个方程对于这两个变量中的一个都是一级的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The nearest polynomial with a zero in a given domain
For a real univariate polynomial f and a bounded closed domain D ⊂ C whose boundary C is a simple closed curve of finite length and is represented by a piecewise rational function, we provide a rigorous method for finding the real univariate polynomial f such that f has a zero in D and ||f -- f||∞ is minimal. First, we prove that the absolute value of every coefficient of f -- f is ||f -- f∞ with at most one exception. Using this property and the representation of C, we reduce the problem to solving systems of algebraic equations, each of which consists of two equations with two variables. Furthermore, every equation is of degree one with respect to one of the two variables.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信