Suwon Suh, Daniel H. Chae, Hyon-Goo Kang, Seungjin Choi
{"title":"回声状态条件变分自编码器异常检测","authors":"Suwon Suh, Daniel H. Chae, Hyon-Goo Kang, Seungjin Choi","doi":"10.1109/IJCNN.2016.7727309","DOIUrl":null,"url":null,"abstract":"Anomaly detection involves identifying the events which do not conform to an expected pattern in data. A common approach to anomaly detection is to identify outliers in a latent space learned from data. For instance, PCA has been successfully used for anomaly detection. Variational autoencoder (VAE) is a recently-developed deep generative model which has established itself as a powerful method for learning representation from data in a nonlinear way. However, the VAE does not take the temporal dependence in data into account, so it limits its applicability to time series. In this paper we combine the echo-state network, which is a simple training method for recurrent networks, with the VAE, in order to learn representation from multivariate time series data. We present an echo-state conditional variational autoencoder (ES-CVAE) and demonstrate its useful behavior in the task of anomaly detection in multivariate time series data.","PeriodicalId":109405,"journal":{"name":"2016 International Joint Conference on Neural Networks (IJCNN)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"62","resultStr":"{\"title\":\"Echo-state conditional variational autoencoder for anomaly detection\",\"authors\":\"Suwon Suh, Daniel H. Chae, Hyon-Goo Kang, Seungjin Choi\",\"doi\":\"10.1109/IJCNN.2016.7727309\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Anomaly detection involves identifying the events which do not conform to an expected pattern in data. A common approach to anomaly detection is to identify outliers in a latent space learned from data. For instance, PCA has been successfully used for anomaly detection. Variational autoencoder (VAE) is a recently-developed deep generative model which has established itself as a powerful method for learning representation from data in a nonlinear way. However, the VAE does not take the temporal dependence in data into account, so it limits its applicability to time series. In this paper we combine the echo-state network, which is a simple training method for recurrent networks, with the VAE, in order to learn representation from multivariate time series data. We present an echo-state conditional variational autoencoder (ES-CVAE) and demonstrate its useful behavior in the task of anomaly detection in multivariate time series data.\",\"PeriodicalId\":109405,\"journal\":{\"name\":\"2016 International Joint Conference on Neural Networks (IJCNN)\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"62\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 International Joint Conference on Neural Networks (IJCNN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IJCNN.2016.7727309\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Joint Conference on Neural Networks (IJCNN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2016.7727309","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Echo-state conditional variational autoencoder for anomaly detection
Anomaly detection involves identifying the events which do not conform to an expected pattern in data. A common approach to anomaly detection is to identify outliers in a latent space learned from data. For instance, PCA has been successfully used for anomaly detection. Variational autoencoder (VAE) is a recently-developed deep generative model which has established itself as a powerful method for learning representation from data in a nonlinear way. However, the VAE does not take the temporal dependence in data into account, so it limits its applicability to time series. In this paper we combine the echo-state network, which is a simple training method for recurrent networks, with the VAE, in order to learn representation from multivariate time series data. We present an echo-state conditional variational autoencoder (ES-CVAE) and demonstrate its useful behavior in the task of anomaly detection in multivariate time series data.