一种新的基于等距离分散的聚类索引

Caio Flexa, Reginaldo Santos, W. Gomes, C. Sales
{"title":"一种新的基于等距离分散的聚类索引","authors":"Caio Flexa, Reginaldo Santos, W. Gomes, C. Sales","doi":"10.1109/BRACIS.2018.00099","DOIUrl":null,"url":null,"abstract":"We propose a new non-parametric internal validity index based on mutual equidistant-scattering among within-cluster data for fine-tuning the number of clusters, i.e., the hyperparameter K. Most of the validity indexes found in the literature are considered to be dependent on the number of data objects in clusters and often tend to ignore small and low-density groups. Moreover, they select suboptimal clustering solutions when the clusters are in a certain degree of overlapping or low separation. We analysed our index performance with four of the most popular validity indexes. Experiments on both synthetic and real-world data show the effectiveness and reliability of our approach to evaluate the hyperparameter K.","PeriodicalId":405190,"journal":{"name":"2018 7th Brazilian Conference on Intelligent Systems (BRACIS)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Novel Equidistant-Scattering-Based Cluster Index\",\"authors\":\"Caio Flexa, Reginaldo Santos, W. Gomes, C. Sales\",\"doi\":\"10.1109/BRACIS.2018.00099\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a new non-parametric internal validity index based on mutual equidistant-scattering among within-cluster data for fine-tuning the number of clusters, i.e., the hyperparameter K. Most of the validity indexes found in the literature are considered to be dependent on the number of data objects in clusters and often tend to ignore small and low-density groups. Moreover, they select suboptimal clustering solutions when the clusters are in a certain degree of overlapping or low separation. We analysed our index performance with four of the most popular validity indexes. Experiments on both synthetic and real-world data show the effectiveness and reliability of our approach to evaluate the hyperparameter K.\",\"PeriodicalId\":405190,\"journal\":{\"name\":\"2018 7th Brazilian Conference on Intelligent Systems (BRACIS)\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 7th Brazilian Conference on Intelligent Systems (BRACIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BRACIS.2018.00099\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 7th Brazilian Conference on Intelligent Systems (BRACIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BRACIS.2018.00099","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一种新的基于簇内数据相互等距离散射的非参数内部有效性指标,用于微调簇的数量,即超参数k。文献中发现的大多数有效性指标都被认为依赖于簇中数据对象的数量,往往忽略了小而低密度的群体。此外,当聚类处于一定程度的重叠或低分离时,它们会选择次优聚类解。我们用四个最流行的有效性指标分析了我们的指标表现。在合成数据和真实数据上的实验表明,我们的方法评估超参数K的有效性和可靠性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Novel Equidistant-Scattering-Based Cluster Index
We propose a new non-parametric internal validity index based on mutual equidistant-scattering among within-cluster data for fine-tuning the number of clusters, i.e., the hyperparameter K. Most of the validity indexes found in the literature are considered to be dependent on the number of data objects in clusters and often tend to ignore small and low-density groups. Moreover, they select suboptimal clustering solutions when the clusters are in a certain degree of overlapping or low separation. We analysed our index performance with four of the most popular validity indexes. Experiments on both synthetic and real-world data show the effectiveness and reliability of our approach to evaluate the hyperparameter K.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信