糖尿病预测的贝叶斯优化框架

Md. Abdur Rahman, S. M. Shoaib, Md. Al Amin, Rafia Nishat Toma, M. Moni, M. Awal
{"title":"糖尿病预测的贝叶斯优化框架","authors":"Md. Abdur Rahman, S. M. Shoaib, Md. Al Amin, Rafia Nishat Toma, M. Moni, M. Awal","doi":"10.1109/ICAEE48663.2019.8975480","DOIUrl":null,"url":null,"abstract":"The advances of bioinformatics and medical sciences have generated an enormous amount of data which can be used by machine learning (ML) and data mining (DT) methods to transform the data into valuable knowledge and can improve diagnosis, prediction, and management of most chronic diseases. One of the most life-threatening and widespread chronic diseases is Type 2 Diabetes Mellitus (T2DM), characterized by impaired operation of glucose homeostasis. We used several cutting-edge machine learning algorithms including Random Forest (RF), Support Vector Machine (SVM), Decision Tree (DT), Naive Bayes (NB) on diabetes data. A state-of-the-art Bayesian Optimization (BO) has been proposed to optimize the hyper-parameters of machine learning classifiers for the Diabetes Mellitus (DM). The optimized hyperparameters using BO achieved an accuracy of 77.60% with RF, 76.04% with SVM, 71.61% for DT, 73.96% for NB classifier. We also achieved 64.06% accuracy without BO optimized SVM. We justified our models using confusion matrix for each classifier. The statistical comparison among different classifier’s performances has been presented using the Boxplot and Analysis of variance (ANOVA) test.","PeriodicalId":138634,"journal":{"name":"2019 5th International Conference on Advances in Electrical Engineering (ICAEE)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A Bayesian Optimization Framework for the Prediction of Diabetes Mellitus\",\"authors\":\"Md. Abdur Rahman, S. M. Shoaib, Md. Al Amin, Rafia Nishat Toma, M. Moni, M. Awal\",\"doi\":\"10.1109/ICAEE48663.2019.8975480\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The advances of bioinformatics and medical sciences have generated an enormous amount of data which can be used by machine learning (ML) and data mining (DT) methods to transform the data into valuable knowledge and can improve diagnosis, prediction, and management of most chronic diseases. One of the most life-threatening and widespread chronic diseases is Type 2 Diabetes Mellitus (T2DM), characterized by impaired operation of glucose homeostasis. We used several cutting-edge machine learning algorithms including Random Forest (RF), Support Vector Machine (SVM), Decision Tree (DT), Naive Bayes (NB) on diabetes data. A state-of-the-art Bayesian Optimization (BO) has been proposed to optimize the hyper-parameters of machine learning classifiers for the Diabetes Mellitus (DM). The optimized hyperparameters using BO achieved an accuracy of 77.60% with RF, 76.04% with SVM, 71.61% for DT, 73.96% for NB classifier. We also achieved 64.06% accuracy without BO optimized SVM. We justified our models using confusion matrix for each classifier. The statistical comparison among different classifier’s performances has been presented using the Boxplot and Analysis of variance (ANOVA) test.\",\"PeriodicalId\":138634,\"journal\":{\"name\":\"2019 5th International Conference on Advances in Electrical Engineering (ICAEE)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 5th International Conference on Advances in Electrical Engineering (ICAEE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICAEE48663.2019.8975480\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 5th International Conference on Advances in Electrical Engineering (ICAEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAEE48663.2019.8975480","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

生物信息学和医学科学的进步产生了大量的数据,这些数据可以通过机器学习(ML)和数据挖掘(DT)方法将数据转化为有价值的知识,并可以改善大多数慢性疾病的诊断、预测和管理。2型糖尿病(T2DM)是最危及生命和最广泛的慢性疾病之一,其特征是葡萄糖稳态功能受损。我们使用了几种尖端的机器学习算法,包括随机森林(RF)、支持向量机(SVM)、决策树(DT)、朴素贝叶斯(NB)对糖尿病数据进行处理。提出了一种最先进的贝叶斯优化(BO)方法来优化糖尿病(DM)机器学习分类器的超参数。使用BO优化的超参数在RF、SVM、DT和NB分类器上的准确率分别为77.60%、76.04%、71.61%和73.96%。在没有BO优化支持向量机的情况下,准确率也达到了64.06%。我们使用每个分类器的混淆矩阵来证明我们的模型。使用箱线图和方差分析(ANOVA)检验对不同分类器的性能进行了统计比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Bayesian Optimization Framework for the Prediction of Diabetes Mellitus
The advances of bioinformatics and medical sciences have generated an enormous amount of data which can be used by machine learning (ML) and data mining (DT) methods to transform the data into valuable knowledge and can improve diagnosis, prediction, and management of most chronic diseases. One of the most life-threatening and widespread chronic diseases is Type 2 Diabetes Mellitus (T2DM), characterized by impaired operation of glucose homeostasis. We used several cutting-edge machine learning algorithms including Random Forest (RF), Support Vector Machine (SVM), Decision Tree (DT), Naive Bayes (NB) on diabetes data. A state-of-the-art Bayesian Optimization (BO) has been proposed to optimize the hyper-parameters of machine learning classifiers for the Diabetes Mellitus (DM). The optimized hyperparameters using BO achieved an accuracy of 77.60% with RF, 76.04% with SVM, 71.61% for DT, 73.96% for NB classifier. We also achieved 64.06% accuracy without BO optimized SVM. We justified our models using confusion matrix for each classifier. The statistical comparison among different classifier’s performances has been presented using the Boxplot and Analysis of variance (ANOVA) test.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信