说话人识别系统的MFCC和相似度测量

A. Maazouzi, N. Aqili, A. Aamoud, M. Raji, A. Hammouch
{"title":"说话人识别系统的MFCC和相似度测量","authors":"A. Maazouzi, N. Aqili, A. Aamoud, M. Raji, A. Hammouch","doi":"10.1109/EITECH.2017.8255301","DOIUrl":null,"url":null,"abstract":"Identity of a person via voice is one of the most interesting techniques used for user identification. Almost of speaker identification systems are based on distance computation or likelihood. Accuracy of identification process depends on: (i) the number of feature vectors, (ii) their dimensionality, and (iii) the number of speakers. This paper aims to develop a system able to identify a person from a sample of his speech. Recognition relies on a text-dependent system using English words as a password. Speech features are extracted using Mel Frequency Cepstral Coefficients (MFCCs). The recognition is based on discrete to continuous algorithm. Experimental results demonstrated that the proposed system return good accuracy rate.","PeriodicalId":447139,"journal":{"name":"2017 International Conference on Electrical and Information Technologies (ICEIT)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"MFCC and similarity measurements for speaker identification systems\",\"authors\":\"A. Maazouzi, N. Aqili, A. Aamoud, M. Raji, A. Hammouch\",\"doi\":\"10.1109/EITECH.2017.8255301\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Identity of a person via voice is one of the most interesting techniques used for user identification. Almost of speaker identification systems are based on distance computation or likelihood. Accuracy of identification process depends on: (i) the number of feature vectors, (ii) their dimensionality, and (iii) the number of speakers. This paper aims to develop a system able to identify a person from a sample of his speech. Recognition relies on a text-dependent system using English words as a password. Speech features are extracted using Mel Frequency Cepstral Coefficients (MFCCs). The recognition is based on discrete to continuous algorithm. Experimental results demonstrated that the proposed system return good accuracy rate.\",\"PeriodicalId\":447139,\"journal\":{\"name\":\"2017 International Conference on Electrical and Information Technologies (ICEIT)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 International Conference on Electrical and Information Technologies (ICEIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EITECH.2017.8255301\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Electrical and Information Technologies (ICEIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EITECH.2017.8255301","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

通过语音识别一个人的身份是用于用户识别的最有趣的技术之一。几乎所有的说话人识别系统都是基于距离计算或似然。识别过程的准确性取决于:(i)特征向量的数量,(ii)特征向量的维度,(iii)说话人的数量。本文旨在开发一个能够从一个人的演讲样本中识别一个人的系统。识别依赖于使用英语单词作为密码的文本依赖系统。使用Mel频率倒谱系数(MFCCs)提取语音特征。识别是基于离散到连续的算法。实验结果表明,该系统具有良好的准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
MFCC and similarity measurements for speaker identification systems
Identity of a person via voice is one of the most interesting techniques used for user identification. Almost of speaker identification systems are based on distance computation or likelihood. Accuracy of identification process depends on: (i) the number of feature vectors, (ii) their dimensionality, and (iii) the number of speakers. This paper aims to develop a system able to identify a person from a sample of his speech. Recognition relies on a text-dependent system using English words as a password. Speech features are extracted using Mel Frequency Cepstral Coefficients (MFCCs). The recognition is based on discrete to continuous algorithm. Experimental results demonstrated that the proposed system return good accuracy rate.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信