一种快速谱法求解文档聚类集成问题

Sen Xu, Zhimao Lu, Guochang Gu
{"title":"一种快速谱法求解文档聚类集成问题","authors":"Sen Xu, Zhimao Lu, Guochang Gu","doi":"10.1109/IMSCCS.2008.8","DOIUrl":null,"url":null,"abstract":"The critical problem in cluster ensemble is how to combine clusterers to yield a final superior clustering result. In this paper, we introduce a spectral method to solve document cluster ensemble problem. Since spectral clustering inevitably needs to compute the eigenvalues and eigenvectors of a matrix, for large scale document datasets, itpsilas computationally intractable. By using algebraic transformation to similarity matrix we get a feasible algorithm. Experiments on TREC and Reuters document sets show that our spectral algorithm yields better clustering results than other typical cluster ensemble techniques without high computational cost.","PeriodicalId":122953,"journal":{"name":"2008 International Multi-symposiums on Computer and Computational Sciences","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A Fast Spectral Method to Solve Document Cluster Ensemble Problem\",\"authors\":\"Sen Xu, Zhimao Lu, Guochang Gu\",\"doi\":\"10.1109/IMSCCS.2008.8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The critical problem in cluster ensemble is how to combine clusterers to yield a final superior clustering result. In this paper, we introduce a spectral method to solve document cluster ensemble problem. Since spectral clustering inevitably needs to compute the eigenvalues and eigenvectors of a matrix, for large scale document datasets, itpsilas computationally intractable. By using algebraic transformation to similarity matrix we get a feasible algorithm. Experiments on TREC and Reuters document sets show that our spectral algorithm yields better clustering results than other typical cluster ensemble techniques without high computational cost.\",\"PeriodicalId\":122953,\"journal\":{\"name\":\"2008 International Multi-symposiums on Computer and Computational Sciences\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 International Multi-symposiums on Computer and Computational Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IMSCCS.2008.8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 International Multi-symposiums on Computer and Computational Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IMSCCS.2008.8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

聚类集成的关键问题是如何将聚类组合在一起以获得最终的优聚类结果。本文引入了一种谱方法来解决文档聚类集成问题。由于谱聚类不可避免地需要计算矩阵的特征值和特征向量,对于大规模文档数据集,谱聚类的计算难度很大。通过对相似矩阵的代数变换,得到了一种可行的算法。在TREC和Reuters文档集上的实验表明,我们的谱算法比其他典型的聚类集成技术具有更好的聚类效果,且计算成本不高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Fast Spectral Method to Solve Document Cluster Ensemble Problem
The critical problem in cluster ensemble is how to combine clusterers to yield a final superior clustering result. In this paper, we introduce a spectral method to solve document cluster ensemble problem. Since spectral clustering inevitably needs to compute the eigenvalues and eigenvectors of a matrix, for large scale document datasets, itpsilas computationally intractable. By using algebraic transformation to similarity matrix we get a feasible algorithm. Experiments on TREC and Reuters document sets show that our spectral algorithm yields better clustering results than other typical cluster ensemble techniques without high computational cost.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信