基于模糊逻辑和人工神经网络的智能控制器设计方法

A. Menozzi, Meyuen Chow
{"title":"基于模糊逻辑和人工神经网络的智能控制器设计方法","authors":"A. Menozzi, Meyuen Chow","doi":"10.1109/IECON.1993.339043","DOIUrl":null,"url":null,"abstract":"The optimal control of nonlinear time-varying systems, particularly when the mathematical model of the system is unavailable or inexact, is an interesting and difficult control problem. This paper outlines a methodology for the design of an intelligent controller to perform optimal control of a nonlinear system adaptively, using emerging technologies of fuzzy logic (FL) and artificial neural networks (ANN). FL is utilized to incorporate the available knowledge into the control system, and ANN technology is applied to adaptively provide an optimal control strategy based on some performance criteria. The technique is tested on a system that consists of a DC motor (a linear time-invariant (LTI) system) and a thermal system (a time-varying nonlinear system). Performance criteria such as tracking accuracy, cost, robustness, are considered, and the results are presented in this paper.<<ETX>>","PeriodicalId":132101,"journal":{"name":"Proceedings of IECON '93 - 19th Annual Conference of IEEE Industrial Electronics","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1993-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"A design methodology for an intelligent controller using fuzzy logic and artificial neural networks\",\"authors\":\"A. Menozzi, Meyuen Chow\",\"doi\":\"10.1109/IECON.1993.339043\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The optimal control of nonlinear time-varying systems, particularly when the mathematical model of the system is unavailable or inexact, is an interesting and difficult control problem. This paper outlines a methodology for the design of an intelligent controller to perform optimal control of a nonlinear system adaptively, using emerging technologies of fuzzy logic (FL) and artificial neural networks (ANN). FL is utilized to incorporate the available knowledge into the control system, and ANN technology is applied to adaptively provide an optimal control strategy based on some performance criteria. The technique is tested on a system that consists of a DC motor (a linear time-invariant (LTI) system) and a thermal system (a time-varying nonlinear system). Performance criteria such as tracking accuracy, cost, robustness, are considered, and the results are presented in this paper.<<ETX>>\",\"PeriodicalId\":132101,\"journal\":{\"name\":\"Proceedings of IECON '93 - 19th Annual Conference of IEEE Industrial Electronics\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1993-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of IECON '93 - 19th Annual Conference of IEEE Industrial Electronics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IECON.1993.339043\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of IECON '93 - 19th Annual Conference of IEEE Industrial Electronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IECON.1993.339043","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

非线性时变系统的最优控制是一个有趣而又困难的控制问题,特别是当系统的数学模型不可用或不精确时。本文概述了一种利用模糊逻辑(FL)和人工神经网络(ANN)等新兴技术,自适应地对非线性系统进行最优控制的智能控制器设计方法。利用人工神经网络(FL)将可用的知识整合到控制系统中,并利用人工神经网络技术根据一定的性能标准自适应地提供最优控制策略。该技术在由直流电动机(线性时不变系统)和热系统(时变非线性系统)组成的系统上进行了测试。本文考虑了跟踪精度、成本、鲁棒性等性能指标,并给出了结果
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A design methodology for an intelligent controller using fuzzy logic and artificial neural networks
The optimal control of nonlinear time-varying systems, particularly when the mathematical model of the system is unavailable or inexact, is an interesting and difficult control problem. This paper outlines a methodology for the design of an intelligent controller to perform optimal control of a nonlinear system adaptively, using emerging technologies of fuzzy logic (FL) and artificial neural networks (ANN). FL is utilized to incorporate the available knowledge into the control system, and ANN technology is applied to adaptively provide an optimal control strategy based on some performance criteria. The technique is tested on a system that consists of a DC motor (a linear time-invariant (LTI) system) and a thermal system (a time-varying nonlinear system). Performance criteria such as tracking accuracy, cost, robustness, are considered, and the results are presented in this paper.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信