梯度优化盲源分离算法

Hua Yang, Hang Zhang, Liu Yang
{"title":"梯度优化盲源分离算法","authors":"Hua Yang, Hang Zhang, Liu Yang","doi":"10.1109/WCSP.2015.7341112","DOIUrl":null,"url":null,"abstract":"In this paper, a new gradient optimized blind source separation algorithm (GOA) which aims at improving the convergence performance is proposed. This algorithm modifies the gradient of cost function to make the iteration process of separation matrix closer to its change pattern. To be more specific, by adding the difference value between current time gradient and previous time gradient to the adaptive iterations of separation matrix, the proposed algorithm effectively improves convergence rate. Simulation experiment results show that the GOA has faster convergence rate when compared with the traditional momentum EASI algorithm. In the small step size conditions, the advantage of GOA is even more obvious.","PeriodicalId":164776,"journal":{"name":"2015 International Conference on Wireless Communications & Signal Processing (WCSP)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gradient optimized blind sources separation algorithm\",\"authors\":\"Hua Yang, Hang Zhang, Liu Yang\",\"doi\":\"10.1109/WCSP.2015.7341112\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a new gradient optimized blind source separation algorithm (GOA) which aims at improving the convergence performance is proposed. This algorithm modifies the gradient of cost function to make the iteration process of separation matrix closer to its change pattern. To be more specific, by adding the difference value between current time gradient and previous time gradient to the adaptive iterations of separation matrix, the proposed algorithm effectively improves convergence rate. Simulation experiment results show that the GOA has faster convergence rate when compared with the traditional momentum EASI algorithm. In the small step size conditions, the advantage of GOA is even more obvious.\",\"PeriodicalId\":164776,\"journal\":{\"name\":\"2015 International Conference on Wireless Communications & Signal Processing (WCSP)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 International Conference on Wireless Communications & Signal Processing (WCSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WCSP.2015.7341112\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Wireless Communications & Signal Processing (WCSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WCSP.2015.7341112","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种新的梯度优化盲源分离算法(GOA),以提高其收敛性能。该算法对代价函数的梯度进行了修正,使分离矩阵的迭代过程更接近于其变化规律。具体来说,该算法通过在分离矩阵的自适应迭代中加入当前时间梯度与之前时间梯度的差值,有效地提高了收敛速度。仿真实验结果表明,与传统动量EASI算法相比,该算法具有更快的收敛速度。在小步长条件下,GOA的优势更加明显。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Gradient optimized blind sources separation algorithm
In this paper, a new gradient optimized blind source separation algorithm (GOA) which aims at improving the convergence performance is proposed. This algorithm modifies the gradient of cost function to make the iteration process of separation matrix closer to its change pattern. To be more specific, by adding the difference value between current time gradient and previous time gradient to the adaptive iterations of separation matrix, the proposed algorithm effectively improves convergence rate. Simulation experiment results show that the GOA has faster convergence rate when compared with the traditional momentum EASI algorithm. In the small step size conditions, the advantage of GOA is even more obvious.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信