基于图神经网络的有限元分析代理模型

Meduri Venkata Shivaditya, J. Alves, Francesca Bugiotti, F. Magoulès
{"title":"基于图神经网络的有限元分析代理模型","authors":"Meduri Venkata Shivaditya, J. Alves, Francesca Bugiotti, F. Magoulès","doi":"10.1109/DCABES57229.2022.00035","DOIUrl":null,"url":null,"abstract":"Current simulation of metal forging processes use advanced finite element methods. Such methods consist of solving mathematical equations, which takes a significant amount of time for the simulation to complete. Computational time can be prohibitive for parametric response surface exploration tasks. In this paper, we propose as an alternative, a Graph Neural Network-based graph prediction model to act as a surrogate model for parameters search space exploration and which exhibits a time cost reduced by an order of magnitude. Numerical experiments show that this new model outperforms the Point-Net model and the Dynamic Graph Convolutional Neural Net model.","PeriodicalId":344365,"journal":{"name":"2022 21st International Symposium on Distributed Computing and Applications for Business Engineering and Science (DCABES)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Graph Neural Network-based Surrogate Models for Finite Element Analysis\",\"authors\":\"Meduri Venkata Shivaditya, J. Alves, Francesca Bugiotti, F. Magoulès\",\"doi\":\"10.1109/DCABES57229.2022.00035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Current simulation of metal forging processes use advanced finite element methods. Such methods consist of solving mathematical equations, which takes a significant amount of time for the simulation to complete. Computational time can be prohibitive for parametric response surface exploration tasks. In this paper, we propose as an alternative, a Graph Neural Network-based graph prediction model to act as a surrogate model for parameters search space exploration and which exhibits a time cost reduced by an order of magnitude. Numerical experiments show that this new model outperforms the Point-Net model and the Dynamic Graph Convolutional Neural Net model.\",\"PeriodicalId\":344365,\"journal\":{\"name\":\"2022 21st International Symposium on Distributed Computing and Applications for Business Engineering and Science (DCABES)\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 21st International Symposium on Distributed Computing and Applications for Business Engineering and Science (DCABES)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DCABES57229.2022.00035\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 21st International Symposium on Distributed Computing and Applications for Business Engineering and Science (DCABES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DCABES57229.2022.00035","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

目前的金属锻造过程模拟采用了先进的有限元方法。这些方法包括求解数学方程,这需要大量的时间来完成模拟。对于参数响应面勘探任务,计算时间可能是令人望而却步的。在本文中,我们提出了一种替代方案,基于图神经网络的图预测模型作为参数搜索空间探索的替代模型,该模型的时间成本降低了一个数量级。数值实验表明,该模型优于点网模型和动态图卷积神经网络模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Graph Neural Network-based Surrogate Models for Finite Element Analysis
Current simulation of metal forging processes use advanced finite element methods. Such methods consist of solving mathematical equations, which takes a significant amount of time for the simulation to complete. Computational time can be prohibitive for parametric response surface exploration tasks. In this paper, we propose as an alternative, a Graph Neural Network-based graph prediction model to act as a surrogate model for parameters search space exploration and which exhibits a time cost reduced by an order of magnitude. Numerical experiments show that this new model outperforms the Point-Net model and the Dynamic Graph Convolutional Neural Net model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信