视频监控中的运动目标检测与阴影去除

Tinggui Yan, Shaohua Hu, Xiao-chen Su, Xinhua He
{"title":"视频监控中的运动目标检测与阴影去除","authors":"Tinggui Yan, Shaohua Hu, Xiao-chen Su, Xinhua He","doi":"10.1109/SKIMA.2016.7916189","DOIUrl":null,"url":null,"abstract":"The automatic analysis of digital video scenes often requires the segmentation of moving objects from a static background. The most popular approach involves subtracting the current frame from the background image. How to correctly and efficiently model and update the background model and how to deal with shadows are two of the most distinguishing and challenging aspects of such approach. In order to solve these problems, we presented an adaptive background subtract method based on improved mixture Gaussian and an effective shadow removal algorithm based on shadow attributes. Experimental results with lots of video data and comparative analysis with recent adaptive object detection techniques show the strength of the proposed technique in eliminating noise, shadow, and trailing effect while maintaining better stability across variable operating speeds.","PeriodicalId":417370,"journal":{"name":"2016 10th International Conference on Software, Knowledge, Information Management & Applications (SKIMA)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Moving object detection and shadow removal in video surveillance\",\"authors\":\"Tinggui Yan, Shaohua Hu, Xiao-chen Su, Xinhua He\",\"doi\":\"10.1109/SKIMA.2016.7916189\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The automatic analysis of digital video scenes often requires the segmentation of moving objects from a static background. The most popular approach involves subtracting the current frame from the background image. How to correctly and efficiently model and update the background model and how to deal with shadows are two of the most distinguishing and challenging aspects of such approach. In order to solve these problems, we presented an adaptive background subtract method based on improved mixture Gaussian and an effective shadow removal algorithm based on shadow attributes. Experimental results with lots of video data and comparative analysis with recent adaptive object detection techniques show the strength of the proposed technique in eliminating noise, shadow, and trailing effect while maintaining better stability across variable operating speeds.\",\"PeriodicalId\":417370,\"journal\":{\"name\":\"2016 10th International Conference on Software, Knowledge, Information Management & Applications (SKIMA)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 10th International Conference on Software, Knowledge, Information Management & Applications (SKIMA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SKIMA.2016.7916189\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 10th International Conference on Software, Knowledge, Information Management & Applications (SKIMA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SKIMA.2016.7916189","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

数字视频场景的自动分析往往需要从静态背景中分割出运动物体。最流行的方法是从背景图像中减去当前帧。如何正确有效地建模和更新背景模型以及如何处理阴影是该方法中最显著和最具挑战性的两个方面。为了解决这些问题,我们提出了一种基于改进混合高斯的自适应背景相减方法和一种基于阴影属性的有效阴影去除算法。大量视频数据的实验结果以及与最近的自适应目标检测技术的对比分析表明,该技术在消除噪声、阴影和尾随效应方面具有很强的优势,同时在不同的运行速度下保持更好的稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Moving object detection and shadow removal in video surveillance
The automatic analysis of digital video scenes often requires the segmentation of moving objects from a static background. The most popular approach involves subtracting the current frame from the background image. How to correctly and efficiently model and update the background model and how to deal with shadows are two of the most distinguishing and challenging aspects of such approach. In order to solve these problems, we presented an adaptive background subtract method based on improved mixture Gaussian and an effective shadow removal algorithm based on shadow attributes. Experimental results with lots of video data and comparative analysis with recent adaptive object detection techniques show the strength of the proposed technique in eliminating noise, shadow, and trailing effect while maintaining better stability across variable operating speeds.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信